파이썬을 이용한 머신러닝, 딥러닝 실전 개발 입문 - 웹 크롤링과 스크레이핑부터 머신러닝.딥러닝까지 체계적으로 배우기

파이썬을 이용한 머신러닝, 딥러닝 실전 개발 입문
국내도서
저자 : 쿠지라 히코우즈쿠에 / 윤인성역
출판 : 위키북스 2017.06.15
상세보기


머신러닝의 바탕이 되는 데이터를 수집하고, 수집된 데이터를 기반으로 머신러닝을 수행하는 방법을 설명한다. 인터넷에서 데이터를 어떻게 효율적으로 수집하는지 알아보고, 머신러닝을 원활하게 할 수 있게끔 데이터를 가공하는 방법을 살펴보며 더 나아가 가공된 데이터를 이용해 챗봇 제작, 규동 메뉴 이미지 판정, 얼굴 인식 등 머신러닝에 활용하는 과정까지 실질적인 파이썬 예제 코드로 소개하고 있다. 활용할 데이터만 가지고 있다면 자신이 원하는 것을 만들어낼 수 있다.

역자 동영상 강의


[목   차]

▣ 00장: 머신러닝을 위한 데이터 처리
0-1. 크롤링, 스크레이핑, 머신러닝
___인터넷의 빅데이터
___스크레이핑, 크롤링, 데이터 가공
___머신러닝에 사용할 수 있는 데이터의 구조

▣ 01장: 크롤링과 스크레이핑
1-1. 데이터 다운로드하기
___웹상의 정보를 추출하는 방법
___urllib.request를 이용한 다운로드
___웹에서 데이터 추출하기
___BeautifulSoup로 스크레이핑하기
1-2. BeautifulSoup로 스크레이핑하기
___네이버 금융에서 환율 정보 추출하기
___웹 브라우저로 HTML 구조 확인하기
1-3. CSS 선택자
___위키 문헌에 공개돼 있는 윤동주 작가의 작품 목록 가져오기 
___CSS 선택자 자세히 알아보기
___CSS 선택자로 추출 연습하기
___정규 표현식과 함께 조합하기
1-4. 링크에 있는 것을 한꺼번에 내려받기
___한꺼번에 다운받는 데 필요한 처리 내용
___상대 경로를 전개하는 방법
___재귀적으로 HTML 페이지를 처리하는 방법

▣ 02장: 고급 스크레이핑
2-1. 로그인이 필요한 사이트에서 다운받기
___HTTP 통신
___requests 사용해보기
2-2. 웹 브라우저를 이용한 스크레이핑
___웹 브라우저 원격 조작에 사용하는 Selenium
___웹 사이트를 이미지로 캡처해보기
___네이버에 로그인해서 구매한 물건 목록 가져오기
___Selenium으로 스크레이핑하는 방법
___자바스크립트 실행해보기
2-3. 웹 API로 데이터 추출하기
___웹 API
___웹 API를 제공하는 이유
___웹 API 사용해보기 - OpenWeatherMap의 날씨 정보 
___국내에서 사용할 수 있는 웹 API
2-4. cron을 이용한 정기적인 크롤링
___정기적인 크롤링
___매일 환율 정보 저장하기
___cron으로 매일 한 번 실행하기
___crontab 설정 방법

▣ 03장: 데이터 소스의 서식과 가공
3-1. 웹의 다양한 데이터 형식
___텍스트 데이터와 바이너리 데이터
___XML 분석
___JSON 분석
___YAML 분석
___CSV/TSV 분석
___엑셀 파일 분석
3-2. 데이터베이스
___데이터베이스
___데이터 저장에는 어떤 데이터베이스를 사용해야 할까?
___SQLite - 가볍게 파일 하나로 사용할 수 있는 데이터베이스
___MySQL 사용하기
___TinyDB 사용하기

▣ 04장: 머신러닝
4-1. 머신러닝이란?
___머신러닝 개요
___머신러닝의 종류
___머신러닝의 흐름
___머신러닝의 응용 분야
___초과 학습(초과 적합)
4-2. 머신러닝 첫걸음
___머신러닝 프레임워크 scikit-learn
___XOR 연산 학습해보기
___붓꽃의 품종 분류하기
4-3. 이미지 내부의 문자 인식
___손글씨 숫자 인식하기
___이미지 데이터 학습시키기
4-4. 외국어 문장 판별하기
___외국어 판정
___판정 방법
___샘플 데이터 수집
___언어 판별 프로그램
___웹 인터페이스 추가하기
4-5. 서포트 벡터 머신(SVM)
___SVM이란?
___SVM을 실제로 사용해보기
___SVM의 종류
4-6. 랜덤 포레스트
___랜덤 포레스트란?
___랜덤 포레스트 사용하기
4-7. 데이터를 검증하는 방법
___크로스 밸리데이션
___그리드 서치

▣ 05장: 딥러닝
5-1. 딥러닝 개요
___딥러닝
5-2. TensorFlow 설치하기
___TensorFlow
___설치 방법
___설치가 제대로 됐는지 확인하기
___TensorFlow로 간단한 계산해보기
5-3. Jupyter Notebook
___Jupyter Notebook 설치하고 실행하기
___새 노트 만들기
___데이터 시각화
___TensorFlow와 함께 사용하기
5-4. TensorFlow 기본
___TensorFlow 기본
___머신러닝 해보기
5-5. TensorBoard로 시각화하기
___TensorBoard의 사용법
5-6. TensorBoard로 딥러닝하기
___딥러닝의 구조
___딥러닝 해보기 - MNIST 손글씨 데이터
5-7. Keras로 다양한 딥러닝 해보기
___Keras
___Keras 설치
___Keras로 MNIST 테스트해보기
___Keras로 비만도 판정해보기
5-8. Pandas/NumPy 다루기
___Pandas/NumPy
___데이터 조작
___Pandas/Numpy 정리

▣ 06장: 텍스트 분석과 챗봇 만들기
6-1. 한국어 분석(형태소 분석)
___형태소 분석
___한국어 형태소 분석 라이브러리
___출현 빈도 분석
6-2. Word2Vec으로 문장을 벡터로 변환하기
___Word2Vec
___Gensim 설치
___Gensim의 Word2Vec으로 "토지"를 읽어보기
___위키피디아 한국어 버전을 사전으로 사용해보기
___위키피디아 데이터로 놀아보기
6-3. 베이즈 정리로 텍스트 분류하기
___텍스트 분류
___베이즈 정리
___나이브 베이즈 분류
___베이지안 필터 사용해보기
6-4. MLP로 텍스트 분류하기
___MLP로 텍스트 분류하기
6-5. 문장의 유사도를 N-gram으로 분석하기
___문장의 유사도 분석
___레벤슈타인 거리
___파이썬으로 레벤슈타인 거리를 계산하는 프로그램
___N-gram으로 유사도 구하기
6-6. 마르코프 체인과 LSTM으로 문장 생성하기
___마르코프 체인과 LSTM/RNN
___마르코프 체인이란?
___마르코프 체인 구현하기
___LSTM/RNN
6-7. 챗봇 만들기
___챗봇(회화 봇)
___챗봇의 구조

▣ 07장: 이미지와 딥러닝
7-1. 유사 이미지 검출하기
___간단한 형태 인식 - Average Hash
7-2. CNN으로 Caltech 101의 이미지 분류하기
___CNN으로 색상 있는 이미지 분류해보기
7-3. 규동 메뉴 이미지 판정하기
___규동을 판정할 수 있는 PC가 좋은 PC
___스크레이핑부터 시작하기
7-4. OpenCV로 얼굴 인식하기
___OpenCV
___얼굴을 인식하는 프로그램 만들어보기
___얼굴에 모자이크 걸기
7-5. 이미지 OCR - 연속된 문자 인식하기
___OpenCV로 텍스트 영역 확인하기
___문자 인식 데이터 만들기
___다양한 숫자 폰트 학습 시키기

▣ 부록: 개발 환경 구축
부록-1. Docker로 개발 환경 구축하기
___Docker란?
___Docker 설치
___윈도우 10 이하에서 Docker Toolbox 설치하기
___macOS에서 Docker for Mac 설치하기
부록-2. 파이썬 + Anaconda 환경 준비
___파이썬 + Anaconda 이미지 다운로드


...



Posted by 홍반장水 홍반장水

How to Make a Chatbot - Intro to Deep Learning #12



Code + Challenge for this video:
https://github.com/llSourcell/How_to_...

Nemanja's Winning Code:
https://github.com/Nemzy/language-tra...

Vishal's Runner up code:
https://github.com/erilyth/DeepLearni...

Web app to run the code yourself:
https://ethancaballero.pythonanywhere...

Please subscribe! And like. And comment. That's what keeps me going. 

More Learning resources:
https://www.youtube.com/watch?v=FCtpH...
https://www.youtube.com/watch?v=Qf0Bq...
https://yerevann.github.io/2016/02/05...
https://www.youtube.com/watch?v=2A5DK...
http://www.wildml.com/2016/01/attenti...
https://github.com/domluna/memn2n




...

Posted by 홍반장水 홍반장水


Awesome Reinforcement Learning

A curated list of resources dedicated to reinforcement learning.

https://github.com/aikorea/awesome-rl

We have pages for other topics: awesome-rnnawesome-deep-visionawesome-random-forest

Maintainers: Hyunsoo KimJiwon Kim

We are looking for more contributors and maintainers!

Table of Contents

Codes


Posted by 홍반장水 홍반장水

모두를 위한 딥러닝 - Deep Reinforcement Learning



1. 강좌 소개

본 Reinforcement Learning(강화학습) 강좌는 홍콩과학기술대학교의 김성훈 교수님의 ‘모두를 위한 딥러닝’ 시리즈의 두번째 강좌입니다. 앞선 강좌로  기본적인 머신러닝과 딥러닝 강좌 가 있습니다.

일주일에 한강좌씩 천천이 업데이트 예정입니다.

알파고와 이세돌의 경기를 보면서 이제 머신 러닝이 인간이 잘 한다고 여겨진 직관과 의사 결정능력에서도 충분한 데이타가 있으면 어느정도 또는 우리보다 더 잘할수도 있다는 생각을 많이 하게 되었습니다. Andrew Ng 교수님이 말씀하신것 처럼 이런 시대에 머신 러닝을 잘 이해하고 잘 다룰수 있다면 그야말로 “Super Power”를 가지게 되는 것이 아닌가 생각합니다.

더 많은 분들이 머신 러닝과 딥러닝에 대해 더 이해하고 본인들의 문제를 이 멋진 도구를 이용해서 풀수 있게 하기위해 비디오 강의를 준비하였습니다. 더 나아가 이론에만 그치지 않고 최근 구글이 공개한 머신러닝을 위한 오픈소스인 TensorFlow를 이용해서 이론을 구현해 볼수 있도록 하였습니다.

이 머신러닝, 딥러닝 강좌는 수학이나 컴퓨터 공학적인 지식이 없이도 쉽게 볼수 있도록 만들려고 노력하였습니다.

2. 도움되는 분들

  • 인공지능에 대해 관심이 있는 누구나
  • 머닝러신, 딥러닝의 개념을 이해하고 싶으신분
  • 머닝러신의 직접 구현해보고 싶으신 분
  • 앞선 기본적인 머신러닝과 딥러닝 강좌 를 학습하신 분
  • 강화학습에 대해 관심이 있는 분

3. 참고자료

이 비디오는 저도 인터넷등을 통해 공부하면서 만든것이며 아래 자료를 많이 사용하였습니다.

4. 지식공유자 소개

김성훈

Hong Kong University of Science and Technology 에서 컴퓨터 공학쪽으로 연구를 하고 있습니다.
비디오나 강의에 대한 의견이 있으시면 아래로 이메일을 보내 주시면 됩니다.
hunkim+ml@gmail.com


Posted by 홍반장水 홍반장水