본문 바로가기

기계 학습

랜덤 포레스트 랜덤 포레스트 기계 학습에서의 랜덤 포레스트(영어: random forest)는 분류, 회귀 분석 등에 사용되는 앙상블 학습 방법의 일종으로, 훈련 과정에서 구성한 다수의 결정 트리로부터 부류(분류) 또는 평균 예측치(회귀 분석)를 출력함으로써 동작한다. 정의랜덤 포레스트는 여러 개의 결정 트리들을 임의적으로 학습하는 방식의 앙상블 방법이다. 랜덤 포레스트 방법은 크게 다수의 결정 트리를 구성하는 학습 단계와 입력 벡터가 들어왔을 때, 분류하거나 예측하는 테스트 단계로 구성되어있다. 랜덤 포레스트는 검출, 분류, 그리고 회귀 등 다양한 애플리케이션으로 활용되고 있다.역사랜덤 포레스트의 초기 발전은 단일 트리를 확장하는 맥락에서 이용 가능한 결정(available decisions)에 대한 임의의 부분집합.. 더보기
텐서플로 tensorflow 기계학습 딥러닝 구글 텐서플로 https://www.tensorflow.org/ 구글(Google)사에서 개발한 기계 학습(machine learning) 엔진. 검색, 음성 인식, 번역 등의 구글 앱에 사용되는 기계 학습용 엔진으로, 2015년에 공개 소스 소프트웨어(open source software)로 전환되었다. 텐서플로는 C++ 언어로 작성되었고, 파이선(Python) 응용 프로그래밍 인터페이스(API)를 제공한다. 텐서플로는 빠르고 유연하여 한 대의 스마트 폰에서도 운영될 수 있고, 데이터센터의 수천 대 컴퓨터에서도 동작될 수 있다. Google : https://googleblog.blogspot.kr/2015/11/tensorflow-smarter-machine-learning-for.html Github :.. 더보기