반응형

"""_summary_
얕은 복사(shallow copy)
    list의 슬라이싱을 통한 새로운 값을 할당해봅니다.
    아래의 결과와 같이 슬라이싱을 통해서 값을 할당하면 새로운 id가 부여되며, 서로 영향을 받지 않습니다
"""

print("\n","*" * 30, "\n   얕은 복사(shallow copy) \n","*" * 30) 

a = [1, 2, 3]
b = a[:]
print(" a = ", a)
print(" b = ", b)

print(" id(a) : ", id(a)) #다른 주소
print(" id(b) : ", id(b))

print(" a == b : ", a == b)
print(" a is b : ", a is b)

b[0] = 5

print(a)
print(b)

""" 
    하지만, 이러한 슬라이싱 또한 얕은 복사에 해당합니다.
    리스트안에 리스트 mutable객체 안에 mutable객체인 경우 문제가 됩니다.
    id(a) 값과 id(b) 값은 다르게 되었지만, 그 내부의 객체 id(a[0])과 id(b[0])은 같은 주소를 바라보고 있습니다
"""
a = [[1,2],[3,4]]
b = a[:]
print(" id(a) : ", id(a)) #다른 주소
print(" id(b) : ", id(b))

print(" id(a[0]) : ",id(a[0])) #같은 주소
print(" id(b[0]) : ",id(b[0]))


"""깊은 복사(deep copy)
    깊은 복사는 내부에 객체들까지 모두 새롭게 copy 되는 것입니다.
    copy.deepcopy메소드가 해결해줍니다
"""
print("\n","*" * 30, "\n   deepcopy \n","*" * 30)  

import copy

a = [[1,2],[3,4]]
b = copy.deepcopy(a)
a[1].append(5)

print(" a : ", a)
print(" b : ", b)

print(" id(a) : ", id(a)) #다른 주소
print(" id(b) : ", id(b))

 

반응형
반응형

[python] 얕은 복사(shallow copy)와 깊은 복사(deep copy)

 

https://wikidocs.net/16038

 

12. 얕은 복사(shallow copy)와 깊은 복사(deep copy)

## 1. mutable과 immutable 객체 객체에는 mutable과 immutable 객체가 있습니다. ❈ 객체 구분 표 class 설명 구분 l…

wikidocs.net

 

1. mutable과 immutable 객체

객체에는 mutable과 immutable 객체가 있습니다.

❈ 객체 구분 표

class설명구분

list mutable 한 순서가 있는 객체 집합 mutable
set mutable 한 순서가 없는 고유한 객체 집합 mutable
dict key와 value가 맵핑된 객체, 순서 없음 mutable
bool 참,거짓 immutable
int 정수 immutable
float 실수 immutable
tuple immutable 한 순서가 있는 객체 집합 immutable
str 문자열 immutable
frozenset immutable한 set immutable

일반 user가 작성한 class도 대부분 mutable 한 객체 입니다.
immutable한 클래를 만들기 위해서는 특별한 방법이 필요합니다.

https://stackoverflow.com/questions/4828080/how-to-make-an-immutable-object-in-python

  • REPL에서 mutable과 immutable에서 구분해봅시다. 몇가지만 해봅니다.
  • list 는 mutable 입니다.
  • 변수 a 에 1, 2, 3을 원소로 가지는 리스트를 할당하였습니다.
  • id는 변수의 메모리 주소값을 리턴해줍니다.
  • a의 첫번째 원소를 변경한 후에도 id값은 변경없이 a의 변수가 변경되었습니다.
>>> a = [1, 2, 3]
>>> id(a)
4393788808
>>> a[0] = 5
>>> a
[5, 2, 3]
>>> id(a)
4393788808
  • set도 mutable입니다.
  • |= set에서 or 연산입니다. 합집합이 됩니다.
  • 값은 변경되었으나 id는 변함없습니다.
>>> x = {1, 2, 3}
>>> x
{1, 2, 3}
>>> id(x)
4396095304
>>> x|={4,5,6}
>>> x
{1, 2, 3, 4, 5, 6}
>>> id(x)
4396095304
  • str은 immutable 입니다.
  • s 변수에 첫번째 글자를 변경 시도하면 에러가 발생합니다.
  • s에 다른 값을 할당하면, id가 변경됩니다. 재할당은 애초에 변수를 다시할당하는 것이므로 mutable과 immutable과는 다른 문제입니다. list또한 값을 재할당하면 id가 변경됩니다.
>>> s= "abc"
>>> s
'abc'
>>> id(s)
4387454680
>>> s[0]
'a'
>>> s[0] = 's'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment
>>> s = 'def'
>>> s
'def'
>>> id(s)
4388970768

2. 변수 간 대입

2-1 mutable한 객체의 변수 간 대입

  • list의 얕은 복사를 확인 해봅니다.
  • b 에 a를 할당하면 값이 할당되는 것이 아니라 같은 메모리 주소를 바라봅니다.
  • b를 변경하면 같이 a도 바뀝니다.
  • mutable한 다른 객체 또한 똑같은 현상이 나타납니다.
>>> a = [1, 2, 3]
>>> b = a # shallow copy
>>> b[0]= 5
>>> a
[5, 2, 3]
>>> b
[5, 2, 3]
>>> id(a)
4396179528
>>> id(b)
4396179528

2-2 immutable한 객체의 변수간 대입

  • str 문자열의 얕은 복사를 확인해봅니다.
  • list와 똑같이 b를 a에 할당하면 같은 메모리 주소를 바라보게 됩니다.
  • 하지만 b에 다른 값을 할당하면 재할당이 이루어지며 메모리 주소가 변경됩니다.
  • 고로 a와 b는 다른 값을 가집니다.
>>> a = "abc"
>>> b = a
>>> a
'abc'
>>> b
'abc'
>>> id(a)
4387454680
>>> id(b)
4387454680
>>> b = "abcd"
>>> a
'abc'
>>> b
'abcd'
>>> id(a)
4387454680
>>> id(b)
4396456400

3. 얕은 복사(shallow copy)

  • list의 슬라이싱을 통한 새로운 값을 할당해봅니다.
  • 아래의 결과와 같이 슬라이싱을 통해서 값을 할당하면 새로운 id가 부여되며, 서로 영향을 받지 않습니다.
>>> a = [1,2,3]
>>> b = a[:]
>>> id(a)
4396179528
>>> id(b)
4393788808
>>> a == b
True
>>> a is b
False
>>> b[0] = 5
>>> a
[1, 2, 3]
>>> b
[5, 2, 3]
  • 하지만, 이러한 슬라이싱 또한 얕은 복사에 해당합니다.
  • 리스트안에 리스트 mutable객체 안에 mutable객체인 경우 문제가 됩니다.
  • id(a) 값과 id(b) 값은 다르게 되었지만, 그 내부의 객체 id(a[0])과 id(b[0])은 같은 주소를 바라보고 있습니다.
>>> a = [[1,2], [3,4]]
>>> b = a[:]
>>> id(a)
4395624328
>>> id(b)
4396179592
>>> id(a[0])
4396116040
>>> id(b[0])
4396116040
  • 재할당하는 경우는 문제가 없습니다. 메모리 주소도 변경되었습니다.
>>> a[0] = [8,9]
>>> a
[[8, 9], [3, 4]]
>>> b
[[1, 2], [3, 4]]
>>> id(a[0])
4393788808
>>> id(b[0])
4396116040
  • 하지만, a[1] 에 값을 변경하면 b[1]도 따라 변경됩니다.
>>> a[1].append(5)
>>> a
[[8, 9], [3, 4, 5]]
>>> b
[[1, 2], [3, 4, 5]]
>>> id(a[1])
4396389896
>>> id(b[1])
4396389896
  • copy 모듈의 copy 메소드 또한 얕은 복사입니다.
>>> import copy
>>> a = [[1,2],[3,4]]
>>> b = copy.copy(a)
>>> a[1].append(5)
>>> a
[[1, 2], [3, 4, 5]]
>>> b
[[1, 2], [3, 4, 5]]

4. 깊은 복사(deep copy)

  • 깊은 복사는 내부에 객체들까지 모두 새롭게 copy 되는 것입니다.
  • copy.deepcopy메소드가 해결해줍니다.
>>> import copy
>>> a = [[1,2],[3,4]]
>>> b = copy.deepcopy(a)
>>> a[1].append(5)
>>> a
[[1, 2], [3, 4, 5]]
>>> b
[[1, 2], [3, 4]]




https://suwoni-codelab.com/python%20%EA%B8%B0%EB%B3%B8/2018/03/02/Python-Basic-copy/

 

반응형
반응형

클라우드 컴퓨팅, 모바일 개발, AI의 발전에도 전 세계 기업의 일상적인 비즈니스는 여전히 1990년대에 등장한 3가지 프로그래밍 언어를 기반으로 운영되고 있다. 거의 모든 언어 순위 조사에서 최상위를 차지하는 자바스크립트와 파이썬 그리고 자바다. 깃허브의 연례 옥토버스 현황(State of the Octoverse) 보고서를 보면, 2014년부터 매년 상위 4개 언어 중 3개를 이들 언어가 차지한다. 이들 프로그래밍 강자가 거의 30년 동안 개발자에게 최고의 선택지로 남으며 마땅한 경쟁자조차 없는 이유가 무엇일까?

 

자바스크립트(사용자 580만 명)

자바가 백엔드를 움직인다면, 자바스크립트(이름과는 달리 실제로는 자바와는 아무런 관련이 없다)는 애플리케이션의 프론트엔드를 구동한다. 웹 페이지의 모든 상호작용은 자바스크립트로 작성, 제어되며, 깃허브의 프로그래밍 언어 순위에서 10년 동안 1위를 차지하고 있다.

자바스크립트와 서버 측 짝꿍인 Node.js는 단순하면서도 다양한 용도로 쓸 수 있어 1995년 데뷔 직후부터 인기를 얻었다. 웹 페이지를 만드는 데 사용하는 언어인 HTML과 원활하게 작동하는 자바스크립트는 모바일 앱 개발이 등장하면서 웹 개발 표준으로 자리 잡았다. 현재는 구글부터 유튜브, 페이스북에 이르기까지 모든 곳에서 자바스크립트를 찾을 수 있으며, 세인트루이스 브라운스 야구팀 사이트부터 인기 있는 디자인 매터스 팟캐스트 사이트까지 놀라운 디자인 작업을 구현한다.
 

파이썬(사용자 520만 명)

스크립팅 언어인 파이썬의 강점은 쿼리 작성, 작업 자동화, 데이터 분석이다. 빅데이터와 분석 애플리케이션용 프로그래밍 언어로 최근 들어 인기가 급상승했지만, 의외로 파이썬은 1991년에 데뷔했다. 즉, 여기서 살펴보는 빅 3 언어 중 가장 오래됐다. 아마존, 넷플릭스, 스포티파이, 인스타그램의 애플리케이션은 모두 파이썬으로 작성됐다. 2019년 깃허브 보고서에서 자바를 제치고 2위를 차지했으며, 2022년에는 22.5%로 인기가 더 올라갔다.

파이썬은 일회성 범용 작업에는 탁월하지만, 반면 가장 큰 단점이 속도다. 밀리초가 중요한 실시간 작업이나 금융 거래를 지원하는 데는 자바에 미치지 못합니다. 그럼에도 여전히 소프트웨어 개발자가 가장 많이 선택하는 언어이자 기업이 가장 선호하는 기술이다.
 

자바(사용자 320만 명)

자바는 대부분의 엔터프라이즈 애플리케이션의 기본 프로그래밍 아키텍처다. 인증, 스토리지, 배송 등에 로직과 인텔리전스를 제공하는 등 보이지 않는 곳에서 많은 작업을 수행한다. 아줄(Azul)의 자바 현황 조사 보고서에 따르면, 압도적인 98%의 기업이 소프트웨어 애플리케이션 또는 인프라에서 자바를 사용하고 있다. 이들 중 57%는 자바가 대부분 애플리케이션(60% 이상)의 근간이라고 답했다.

자바는 잘 정립된 언어일 뿐만 아니라 '플라이휠' 효과로 되어 지속적인 인기를 얻고 있다. 자바로 애플리케이션을 만드는 것은 빠르고 쉬우며, 자바로 구축된 애플리케이션이 많을수록 개발 프로세스가 더 단순하고 빨라진다. 일반적으로 애플리케이션은 처음부터 코딩하는 경우는 거의 없다. 특정 기능과 기능을 구현하기 위해 다양한 기술을 조합해 만든다. 자바의 진정한 장점은 수많은 프레임워크, 라이브러리, 오픈소스 자료를 통해 모든 구성 요소가 실전에서 테스트를 거쳤다는 사실이다. 덕분에 개발자는 이런 조합이 잘 작동한다는 것을 신뢰하고 빠르게 애플리케이션을 만들 수 있다.

자바가 인기 언어 상위권에 머무는 이유는 단지 역사적인 힘뿐만이 아니다. 자바는 6개월마다 중요한 기능  업데이트를 제공하며, 분기별로 사소한 개선 사항, 버그 수정, 보안 업데이트가 포함된 릴리스가 나온다. 또한 새로운 기술에 유연하게 적응할 수 있다. 최신 버전인 자바 22는 대형 언어 모델과 생성형 AI를 엔터프라이즈 애플리케이션에 적용하는 데 사용될 가능성이 높다.
 

인기는 계속된다

물론 이들 언어에도 한계가 있다. 가트너 부사장 겸 리서치 디렉터인 린다 아이비 로서는 "(이들 언어로 만들어진) 엔터프라이즈 소프트웨어는 오랜 기간 일종의 지원 기능으로 인식됐다. 혁신이 부족하고, 잘 만들어진 애플리케이션 전략의 이점을 누리는 데 오랜 시간이 걸린다"라고 지적했다. 숙련된 개발자가 부족하고 IT 예산이 빠듯한 상황에서 기업이 당장 문제가 되지 않는 오래된 소프트웨어를 빠르게 수정하지 않는 것이 이해되는 측면도 있다.

언어 측면에서 보면, 오늘날 소프트웨어 개발의 기본 구성 요소인 자바, 파이썬, 자바스크립트를 뒤집을 만한 추진력과 힘을 가진 다른 프로그래밍 언어는 아직 등장하지 않았다. 이들 3가지 언어는 현재 디지털 비즈니스 운영 방식에 필수적인 요소이며 앞으로도 당분간 이 자리를 계속 유지할 것으로 보인다.

 

https://www.itworld.co.kr/news/338433

 

JSㆍ파이썬ㆍ자바가 기업 IT를 지배하는 이유

클라우드 컴퓨팅, 모바일 개발, AI의 발전에도 전 세계 기업의 일상적인 비즈니스는 여전히 1990년대에 등장한 3가지 프로그래밍 언어를 기반으

www.itworld.co.kr

 

반응형
반응형

https://www.facebook.com/pyconkorea/

 

로그인 또는 가입하여 보기

Facebook에서 게시물, 사진 등을 확인하세요.

www.facebook.com

 

[python] 파이콘 2024  - https://2024.pycon.kr/

파이썬 코리아! 2024 이벤트 공지
파이토닉의 순간!
2024년 10월 25~27일 - 수원컨벤션센터
파이썬 사용의 크고 작은 순간을 함께 나누는 파이썬 코리아 창립 10주년 기념 행사에 함께하세요.
이 특별한 이벤트에서 파이썬의 즐거움과 감동을 느껴보세요.
예상 사항:
파이썬 전문가들의 토크 및 워크샵
동료 Pythonistas와 네트워킹 기회
오픈 소스 프로젝트 및 데모
그리고 훨씬 더!
Python 커뮤니티와 연결하고 최고의 소식을 배울 수 있는 이 기회를 놓치지 마세요.
 

 

2024] 파이콘 한국! 올해 슬로건과 일자를 공개합니다!
 
"Pythonic Moments!"
 
2024.10.25 ~ 27 - 수원 컨벤션센터
파이썬을 사용하는 작고 큰 활동과 순간을 공유하고
그 과정에서 느껴지는 재미와 감동의 경험을
올해 10주년을 맞이하는 파이콘 한국에서 만들어볼까요?
더욱 특별한 파이콘 한국 10주년의 순간에
여러분과 함께하길 기대합니다.
SNS를 구독하여 이어질 행사 정보를 가장 빠르게 받아보세요!
 

 

반응형
반응형

파이썬 가상환경과 아나콘다 가상환경은 프로젝트 간의 종속성 충돌을 피하고, 각 프로젝트별로 필요한 패키지를 독립적으로 관리할 수 있도록 도와줍니다. 아래는 각각의 가상환경 사용법을 설명합니다.
 



이와 같이 Python의 `venv` 모듈과 Anaconda의 `conda` 명령어를 사용하여 가상환경을 만들고 관리할 수 있습니다. 가상환경을 통해 프로젝트 간의 종속성 문제를 효과적으로 관리할 수 있습니다.

반응형
반응형

Python에서 현재 설치된 라이브러리(패키지) 목록을 확인하는 방법은 여러 가지가 있습니다. 
주로 pip 패키지 관리자를 사용하여 설치된 패키지 목록을 조회합니다. 
아래는 다양한 방법으로 현재 설치된 라이브러리 목록을 확인하는 방법을 설명합니다.

1. pip list 명령어 사용

가장 일반적인 방법은 터미널 또는 명령 프롬프트에서 pip list 명령을 사용하여 설치된 모든 패키지 목록을 조회하는 것입니다.


pip list




위 명령을 실행하면 설치된 모든 패키지의 목록이 출력됩니다.


2. pip freeze 명령어 사용

pip freeze 명령은 pip list와 유사하게 현재 환경에 설치된 패키지와 그 버전을 출력합니다. 이 명령은 보통 requirements.txt 파일을 생성하는 데 사용됩니다.


pip freeze




3. Python 스크립트를 통한 확인

Python 스크립트 내에서 pkg_resources 모듈을 사용하여 현재 설치된 패키지를 조회할 수 있습니다.

import pkg_resources

# 현재 설치된 패키지 목록 조회
installed_packages = pkg_resources.working_set
installed_packages_list = sorted(["%s==%s" % (i.key, i.version) for i in installed_packages])

for package in installed_packages_list:
    print(package)




4. conda list (conda 환경에서)

만약 Anaconda 또는 Miniconda와 같은 conda 패키지 관리자를 사용하고 있다면, conda list 명령을 사용하여 현재 환경에 설치된 패키지 목록을 확인할 수 있습니다.

conda list



위 방법 중 하나를 선택하여 현재 Python 환경에 설치된 모든 패키지 목록을 확인할 수 있습니다. 

주로 pip list 명령이 가장 일반적이고 널리 사용되는 방법입니다.

반응형
반응형

파이썬은 문자열을 다루는 다양한 메서드를 제공하여 문자열을 효과적으로 조작하고 처리할 수 있습니다. 이러한 메서드들은 문자열 객체에 대해 호출되는 내장 함수들입니다. 아래는 파이썬에서 자주 사용되는 문자열 메서드들을 한글로 설명한 것입니다:

1. str.upper(), str.lower()

  • upper(): 문자열의 모든 문자를 대문자로 변환합니다.
  • lower(): 문자열의 모든 문자를 소문자로 변환합니다.
python
Copy code
s = "Hello World" print(s.upper()) # 출력: "HELLO WORLD" print(s.lower()) # 출력: "hello world"

2. str.strip(), str.lstrip(), str.rstrip()

  • strip(): 문자열의 앞뒤로 있는 공백 문자(스페이스, 탭, 개행)를 제거합니다.
  • lstrip(): 문자열의 왼쪽에 있는 공백 문자를 제거합니다.
  • rstrip(): 문자열의 오른쪽에 있는 공백 문자를 제거합니다.
python
Copy code
s = " Hello " print(s.strip()) # 출력: "Hello" print(s.lstrip()) # 출력: "Hello " print(s.rstrip()) # 출력: " Hello"

3. str.split(), str.splitlines()

  • split(): 문자열을 지정된 구분자를 기준으로 분리하여 부분 문자열들의 리스트를 반환합니다 (기본 구분자는 공백).
  • splitlines(): 여러 줄로 구성된 문자열을 각 줄로 분리하여 리스트를 반환합니다.
python
Copy code
s = "사과,오렌지,바나나" print(s.split(',')) # 출력: ['사과', '오렌지', '바나나'] multiline_string = "첫째 줄\n둘째 줄\n셋째 줄" print(multiline_string.splitlines()) # 출력: ['첫째 줄', '둘째 줄', '셋째 줄']

4. str.join()

  • join(): 반복 가능한(iterable) 객체(예: 리스트)의 요소들을 문자열로 결합하여 하나의 문자열로 반환합니다.
python
Copy code
words = ['사과', '오렌지', '바나나'] print(', '.join(words)) # 출력: "사과, 오렌지, 바나나"

5. str.startswith(prefix), str.endswith(suffix)

  • startswith(): 문자열이 지정된 접두사(prefix)로 시작하는지 여부를 확인합니다.
  • endswith(): 문자열이 지정된 접미사(suffix)로 끝나는지 여부를 확인합니다.
python
Copy code
s = "안녕하세요" print(s.startswith("안녕")) # 출력: True print(s.endswith("하세요")) # 출력: True

6. str.replace(old, new), str.find(substring)

  • replace(): 문자열에서 지정된 구간의 모든 부분 문자열을 다른 문자열로 대체합니다.
  • find(): 문자열에서 지정된 부분 문자열의 첫 번째 등장 위치(인덱스)를 반환합니다.
python
Copy code
s = "안녕하세요" print(s.replace("하세요", "반갑습니다")) # 출력: "안녕반갑습니다" print(s.find("녕")) # 출력: 1 (녕의 위치는 인덱스 1)

7. str.isdigit(), str.isalpha(), str.isalnum(), str.isspace()

  • isdigit(): 문자열의 모든 문자가 숫자인지 여부를 확인합니다.
  • isalpha(): 문자열의 모든 문자가 알파벳(글자)인지 여부를 확인합니다.
  • isalnum(): 문자열의 모든 문자가 알파벳 또는 숫자인지 여부를 확인합니다.
  • isspace(): 문자열의 모든 문자가 공백 문자인지 여부를 확인합니다.
python
Copy code
s1 = "12345" s2 = "안녕" s3 = "안녕123" s4 = " " print(s1.isdigit()) # 출력: True print(s2.isalpha()) # 출력: True print(s3.isalnum()) # 출력: True print(s4.isspace()) # 출력: True

이것들은 파이썬에서 자주 사용되는 문자열 메서드들 중 일부입니다. 파이썬의 문자열 조작 기능은 매우 다양하므로 모든 메서드를 완벽하게 소개할 수는 없지만, 이러한 기본적인 메서드들을 숙지하고 활용하여 문자열을 효과적으로 다룰 수 있습니다.

반응형
반응형

[python] 생성된 엑셀을  Frequency 순으로,  동일 Frequency 이면 단어순으로 정렬

import pandas as pd
from collections import Counter
import re

def read_text_file(file_path):
    """텍스트 파일을 읽고 내용을 반환"""
    with open(file_path, 'r', encoding='utf-8') as file:
        return file.read()

def count_word_frequencies(text):
    """주어진 텍스트에서 단어 빈도수 계산"""
    words = re.findall(r'\b\w+\b', text.lower())
    return Counter(words)

def save_frequencies_to_excel(frequencies, output_file):
    """단어 빈도수를 엑셀 파일로 저장"""
    # 판다스 DataFrame으로 변환
    df = pd.DataFrame(list(frequencies.items()), columns=['Word', 'Frequency'])
    # 빈도수 내림차순, 단어 알파벳순 오름차순으로 정렬
    df = df.sort_values(by=['Frequency', 'Word'], ascending=[False, True])
    # 데이터를 엑셀 파일로 저장
    df.to_excel(output_file, index=False)

# 파일 경로
file_path = 'example.txt'
output_excel = 'word_frequencies.xlsx'

# 파일 읽기
text = read_text_file(file_path)

# 빈도수 분석
frequencies = count_word_frequencies(text)

# 엑셀로 저장
save_frequencies_to_excel(frequencies, output_excel)

print("단어 빈도수가 정렬되어 엑셀 파일로 저장되었습니다.")
  1. DataFrame 변환 및 정렬: pandas.DataFrame을 사용하여 빈도수 데이터를 DataFrame으로 변환한 후, sort_values 메소드를 사용하여 먼저 Frequency 열에 대해 내림차순으로, 동일한 빈도를 가진 항목에 대해서는 Word 열을 기준으로 오름차순 정렬합니다. ascending=[False, True] 파라미터는 각각 Frequency와 Word 열에 적용됩니다.
  2. 엑셀 파일 저장: 정렬된 데이터를 .xlsx 형식의 파일로 저장합니다.
반응형

+ Recent posts