반응형

[tensorflow] 한글 음절 인식기 - hangul-syllable-recognition

 

https://github.com/junstar92/hangul-syllable-recognition

 

GitHub - junstar92/hangul-syllable-recognition: hangul syllable recognition 한글 음절 인식기

hangul syllable recognition 한글 음절 인식기. Contribute to junstar92/hangul-syllable-recognition development by creating an account on GitHub.

github.com

 

Introduction

한글은 조합이 다양하기 때문에 영어에 비해서 OCR 성능이 조금 떨어진다고 알고 있다.

다양한 폰트와 손글씨 데이터를 가지고, 얼마나 한글을 잘 인식하는지 확인하기 위해서 프로젝트를 진행했다.

Getting started

python and pakage version

python3 == 3.8.3

tensorflow_gpu == 2.3.0

numpy == 1.19.5

argparse == 1.1

pandas == 1.2.0

cv2 == 4.5.1

streamlit == 0.74.1

streamlit_drawable_canvas

반응형
반응형

BERT 톺아보기  docs.likejazz.com/bert/

 

BERT 톺아보기 · The Missing Papers

BERT 톺아보기 17 Dec 2018 어느날 SQuAD 리더보드에 낯선 모델이 등장했다. BERT라는 이름의 모델은 싱글 모델로도 지금껏 state-of-the-art 였던 앙상블 모델을 가볍게 누르며 1위를 차지했다. 마치 ELMo를

docs.likejazz.com

 

반응형
반응형

‘감성 분석 뜬다는데 해볼까’는 위험 어떤 문제에 왜 필요한지 정의 먼저

dbr.donga.com/article/view/1101/article_no/8893/ac/special

 

[DBR] ‘감성 분석 뜬다는데 해볼까’는 위험, 어떤 문제에 왜 필요한지 정의 먼저

Article at a Glance기업들이 최근 가장 많은 관심을 갖고 있는 데이터 분석인 ‘감성 분석’은 생각보다 무척 어렵고 복잡하다. 특히 표현이 다양하고 SNS나 인터넷상에서 온갖 형태로, 때로는 거의

dbr.donga.com

그러나 ‘진짜’ 감성 분석, 데이터 과학에 기반해 실제 언어를 맥락에 맞게 이해하고 분석하는 것은 결코 쉬운 일이 아니었다. 그 현란했던 시각화와 프레젠테이션이 지나가고 난 자리에는 오히려 회의감이 남았다. 고객들이 많이 언급했다던 단어와 연관 단어들은 비즈니스에는 큰 도움이 되지 않았다. 실제 ‘어떤 감정에서 왜’ 그 단어가 나왔는지, 실제 소비자들이 어떤 단어나 문장을 통해 말하고자 하는 맥락적 의미가 무엇인지는 전혀 분석되지 않았기 때문이다. 실제로 데이터 과학자들은 감성 분석의 기반이 되는 자연어 처리에 대해 ‘되는 거 몇 개 빼고는 다 안 된다’고 자조적으로 말하기도 했다.

반응형
반응형

딥러닝 자연어처리 - RNN에서 BERT까지

 

< 딥러닝 자연어처리 - RNN에서 BERT까지 >
- RNN/LSTM
- Seq2Seq
- 어텐션
- 트랜스포머
- BERT

< 챗봇 개발자 모임 >
- https://www.facebook.com/groups/ChatbotDevKR/

.

반응형
반응형

인공지능(AI) 언어모델 ‘BERT(버트)'는 무엇인가

github.com/google-research/bert

 

google-research/bert

TensorFlow code and pre-trained models for BERT. Contribute to google-research/bert development by creating an account on GitHub.

github.com

지난해 11월, 구글이 공개한 인공지능(AI) 언어모델 ‘BERT(이하 버트, Bidirectional Encoder Representations from Transformers)’는 일부 성능 평가에서 인간보다 더 높은 정확도를 보이며 2018년 말 현재, 자연 언어 처리(NLP) AI의 최첨단 딥러닝 모델이다. 

또한 BERT는 언어표현 사전학습의 새로운 방법으로 그 의미는 '큰 텍스트 코퍼스(Wikipedia와 같은)'를 이용하여 범용목적의 '언어 이해'(language understanding)' 모델을 훈련시키는 것과 그 모델에 관심 있는 실제의 자연 언어 처리 태스크(질문·응답 등)에 적용하는 것이다.

특히 BERT는 종래보다 우수한 성능을 발휘한다. BERT는 자연언어 처리 태스크를 교육 없이 양방향으로 사전학습하는 첫 시스템이기 때문이다. 교육 없음이란 BERT가 보통의 텍스트 코퍼스만을 이용해 훈련되고 있다는 것을 의미한다. 이것은 웹(Web) 상에서 막대한 양의 보통 텍스트 데이터가 여러 언어로 이용 가능하기 때문에 중요한 특징으로 꼽는다.

사전학습을 마친 특징 표현은 문맥에 '의존하는 방법'와 '의존하지 않는 방법'의 어느 방법도 있을 수 있다. 또 문맥에 의존하는 특징적인 표현은 단방향인 경우와 혹은 양방향일 경우가 있다. word2vec나 GloVe와 같이 문맥에 의존하지 않는 모델에서는, 어휘에 포함되는 각 단어마다 '단어 삽입(word embedding)'이라는 특징 표현을 생성한다. 따라서, 'bank'라는 단어는 'bank deposit' 또는 'river bank'과 같은 특징으로 표현되며, 문맥에 의존하는 모델에서는 문장에 포함되는 다른 단어를 바탕으로 각 단어의 특징을 표현 생성한다.

 

 

 

BERT는 문맥에 의존하는 특징적인 표현의 전학습을 실시하는 대응을 바탕으로 구축되었다. 그러한 대응은 Semi-supervised Sequence Learning, Generative Pre-Training, ELMo, 및 ULMFit를 포함하며, 대응에 의한 모델은 모두 단방향 혹은 얕은 양방향이다. 각 단어는 단지 그 왼쪽(혹은 오른쪽)에 존재하는 단어에 의해서만 문맥의 고려가 되는 것을 의미한다.

예를 들어, I made a bank deposit라는 문장은 bank의 단방향 특징표현은 단지 I made a만에 의해 결정되며, deposit은 고려되지 않는다. 몇개의 이전의 대응에서는 분리한 좌문맥모델과 우문맥모델에 의한 특징표현을 조합하고 있었지만, 이것은 얕은 양방향 방법이다. BERT는 bank를 왼쪽과 오른쪽 양쪽의 문맥 I made a ... deposit을 딥 뉴럴 네트워크(Deposit)의 최하층에서 이용해 특징을 표현하기 때문에 BERT는 '딥 양방향(deeply bidirectional)'이다.

BERT는 간단한 접근법을 사용한다. 입력에서 단어의 15%를 숨기고 딥 양방향 Transformer encoder(관련 논문다운)를 통해 전체 시퀀스를 실행한 다음 마스크 된 단어만 예측한다. 예를 들어, 아래와 같이 문간의 관계를 학습하기 위해서는 임의의 단언어 코퍼스에서 생성 가능한 심플한 작업을 이용하여 학습한다. A와 B의 두 개의 글을 받았을 때 B가 A의 뒤에 오는 실제 문장인지, 코퍼스 안의 랜덤한 글인지를 판정하는 태스크이다.
 

또한 큰 모델(12층에서 24층의 Transformer)을 큰 코퍼스(Wikipedia + BookCorpus)로 긴 시간을 들여(100만 갱신 스텝) 훈련했다. 그것이 BERT이며, 이용은 '사전학습'과 '전이학습'의 2단계로 구분된다.

사전학습(pre-training)은 상당히 고가로 4에서 16개의 Cloud TPU로 4일(12 층의 Transformer 모델의 경우 4개의 TPU를 사용하여 4일, 24층 Transformer 모델의 경우 16개의 TPU를 사용하여 4일이라는 의미) 각 언어마다 1회만의 순서이다. 자연 언어 처리 개발자는 처음부터 자신의 모델을 사전 학습할 필요가 없다.

전이학습(Fine-tuning)은 저렴하며, 논문(아래 참조)과 똑같은 사전학습이 끝난 모델을 사용하여 하나의 Cloud TPU를 이용, 1시간 GPU를 사용하면 2, 3시간만에 재현할 수 있다. 예를 들면 SQuAD는 하나의 Cloud TPU를 이용 30분으로 하나의 시스템으로서는 최첨단(state-of-the-art)인 91.0%의 Dev F1을 달성할 수 있다.

이밖에 BERT의 또 다른 중요한 측면은 많은 종류의 자연 언어 처치 태스크로 인해 매우 쉽게 채택될 수 있다. 논문 중에서 문장 수준 (SST-2 등), 문장 쌍 수준(MultiNLI 등), 단어 수준(NER 등) 스팬 레벨 2 (SQuAD 등)의 태스크에 대해서 거의 태스크 특유의 변경을 실시하는 일 없이, 최첨단 결과를 얻을 수 있는 것을 나타내고 있다.

참고) 'BERT: 언어 이해를 위한 양방향 트랜스포머 사전 학습(BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding)' 논문(다운받기), BERT Google-research의 깃허브(GitHub) (바로가기) 
 

www.aitimes.kr/news/articleView.html?idxno=13117

 

인공지능(AI) 언어모델 ‘BERT(버트)'는 무엇인가 - 인공지능신문

지난해 11월, 구글이 공개한 인공지능(AI) 언어모델 ‘BERT(이하 버트, Bidirectional Encoder Representations from Transformers)’는 일부 성능 평가에서 인간보다 더 높은 정확도를 보이며 2018년 말 현재, ...

www.aitimes.kr

ebbnflow.tistory.com/151

 

[BERT] BERT에 대해 쉽게 알아보기1 - BERT는 무엇인가, 동작 구조

● 언어모델 BERT BERT : Pre-training of Deep Bidirectional Trnasformers for Language Understanding 구글에서 개발한 NLP(자연어처리) 사전 훈련 기술이며, 특정 분야에 국한된 기술이 아니라 모든 자연어..

ebbnflow.tistory.com

vhrehfdl.tistory.com/15

 

슬기로운 NLP 생활 [13] BERT

이전 글 [1] 자연어처리란? [2] Classification Task [3] POS Tagging [4] Stemming, Lemmatizing [5] 형태소 분석기 [6] One-Hot Encoding, Bag Of Word [7] TF-IDF [8] Word2vec [9] Fasttext [10] Glove [11] E..

vhrehfdl.tistory.com

 

반응형
반응형

안녕하세요. 학우 여러분

 

벌써 중간지점까지 왔습니다. 

즐겁게 공부하고 계신가요?

 

야학이 시작될 때는 공개되지 않았던 수업들이 

모두 완성 & 공개되었습니다. 

 

이번에 공개된 수업은 아래와 같습니다.

 

TensorFlow.js 기본
수업 : https://opentutorials.org/course/4628
진도표 : https://yah.ac/tensorflowjs 

 

TensorFlow로 하는 이미지 분류

수업 : https://opentutorials.org/module/5268
진도표 : https://yah.ac/tensorflow102 

 

TensorFlow.js 분류 

수업 : https://opentutorials.org/course/4642  

 

종강이 얼마 남지 않았습니다.

정상에서 모두 만나요. ^^

 

혹시 아직 시작하지 못하셨나요? 

시작하는 순간

가장 혁명적이고, 

가장 가성비 높은 지식을 만나게 됩니다

 

완주하지 못할 것이라는 걱정은 버리고 

시작만 하자는 마음으로 가볍게 몸을 움직여보시면 어떨까요?

 

응원합니다.

https://ml.yah.ac 에서 기다리겠습니다. 

반응형
반응형

생활코딩 - 머신러닝야학

 

서말 : seomal.com/map/1

 

Seomal - 서말

 

seomal.com

라이브 : youtu.be/HUVG4ZnwN5k

머신러닝야학?

머신러닝야학
혼자서 외롭게 머신러닝을 공부하고 있는 분들을
지원하고, 응원하기 위해서 만들어진
작은 학교입니다.

지금부터 우리는 10일 동안
동영상과 전자책으로 제작된 머신러닝 수업을 공부하면서
머신러닝의 흥미진진한 세계를 탐험할 것입니다.

그 과정에서
현업에서 활동 중인 엔지니어들의
기술지원을 받을 수 있습니다.

같은 목표를 향해서 달려가는
동료를 만날 수도 있습니다.

이 여행이 끝나고 나면
머신러닝이 무엇인지 알게 될 것이고,
머신러닝으로 하고 싶은 것이 생길 것입니다.
다시 말해서 꿈을 갖게 될 것입니다.

우리 학교의 목표는 꿈을 먼저 갖는 것입니다.
꿈이 있다면 능력은 차차로 갖춰지게 되어 있습니다.
꿈을 꿉시다.

 

일정

10일간 온라인으로 진행됩니다. 주말에는 쉽니다.

  • 2021.1.4 : 개강
  • 2021.1.15 : 종강
  • 2021.1.19 : 수료식

 

반응형
반응형
대용량 CSV 파일 분할 exe - Free Huge CSV Splitter

국가공간정보포털의 이용과 관심에 감사합니다.

대용량 CSV 파일 분할 EXE 입니다.

File name : split.exe
License : GNU General Public License version 3.0 (GPLv3)

 

www.nsdi.go.kr/lxportal/index.html?menuno=2772&cateIndex=712&bbsno=635&boardno=552

반응형

+ Recent posts