생성형 AI 프롬프트에 악의적인 요청을 자연어 대신 수학 방정식으로 입력하면, 생성형 AI의 보안 장치를 피할 수 있다는 연구 결과가 공개됐다. MathPrompt 미국 텍사스 대학교 샌안토니오, 멕시코 몬테레이 공과대학교, 미국 플로리다 국제 대학교 연구진이 지난주 발표한 연구에 따르면, 생성형 AI 시스템의 악용 방지를 위한 보안장치가 자연어가 아닌 수학 방정식을 입력하는 방식을 통해 무력화될 수 있는 것으로 나타났다. 연구진은 이를 '매쓰프롬프트'라고 명명했으며, 챗GPT와 같은 대규모 언어 모델의 보안 보호 장치를 피할 수 있다는 점에서 '탈옥' 공격의 한 형태라고 설명했다. 또한 "매쓰프롬프트는 현재 AI 안전 조치를 무력화하는 핵심 취약점"이라고 표현했다.많은 보안 전문가가 CISO들은 여전..
올해 2분기 국내 스마트폰 시장의 출하량이 약 299만대로 전년 대비 6.8% 성장했다고 IDC가 25일 밝혔다. 경제 불확실성으로 전체 스마트폰 시장의 수요가 위축되고 있는 상황이지만 AI 기능을 탑재한 플래그십 스마트폰의 높은 수요가 지속되고 있다는 분석이다.이 시장조사기관에 따르면 800달러(USD)이상의 플래그십 제품군의 점유율이 전년 동기 대비 5.3%p 증가한 62.3%를 기록했다. 실시간 번역, 텍스트 요약, 간단해진 검색 등의 AI기술이 별도의 앱 설치 없이 기본 기능에 적용되며 복잡한 과정 없이 이용할 수 있다는 점이 소비자들의 관심을 유발했다는 설명이다. 이 밖에 주요 브랜드의 5G 플래그십 및 중저가 스마트폰이 출시로 인해 5G 점유율은 89.1%로 상승한 것으로 나타났다.반면, 국내..
생성형 AI가 지루한 작업을 처리하고 오류를 찾는 데 능숙하더라도 프로그래머의 전문성과 직관은 항상 필요할 것이다.데이터셋(Datasette)의 설립자 사이먼 윌리슨은 “지금이 프로그래밍을 배우기에 더할 나위 없이 좋은 시기”라고 말했다. AI가 코딩을 대신 해줘서가 아니다. 사실 정반대다. 그는 “대규모 언어 모델은 학습 곡선을 평평하게 만들어 젊은 개발자가 더 쉽게 따라잡을 수 있게 해준다”라고 말했다. 코딩하는 방법을 잊어서는 안 되지만, 생성형 AI를 사용해 경력 수준에 관계없이 개발자 경험을 강화할 수 있다.‘배움에 대한 의지’를 예찬필자는 생성형 AI에 대한 윌리슨의 견해를 살피는 것을 즐긴다. 그는 이 주제를 사려 깊게 생각하는 개발자다. 오라일리(O'Reilly Media)의 마이크 루키데..
생성형 AI를 도입한 소프트웨어 개발 작업에 인간 프로그래머와는 근본적으로 다른 실수가 포함된다는 사실은 잘 알려져 있다. 그럼에도 대부분의 기업에서 AI 코딩 실수를 수정하는 계획은 단순히 숙련된 인간 프로그래머를 루프에 투입하는 것에 의존하고 있다. 숙련된 인간 프로그래머는 인간 프로그래머가 저지르는 실수와 지름길의 종류를 직관적으로 알고 있다. 하지만 소프트웨어가 소프트웨어를 만들 때 발생하는 실수의 종류를 찾아내는 훈련은 별도로 필요하다.이러한 논의는 이르면 2026년부터 대부분의 개발자가 더 이상 코딩을 하지 않을 것으로 예상한다는 AWS CEO 매트 가먼의 발언으로 더욱 가속화되었다. 개발 도구 분야의 많은 업체는 AI 코딩 앱을 관리하기 위해 AI 앱을 사용하면 이 문제를 해결할 수 있다고 ..
오픈AI는 챗GPT(ChatGPT)의 주간 활성 사용자가 2억 명을 돌파했다고 밝혔다. 이는 지난해보다 두 배 증가한 수준이다.39일 악시오스에 따르면, 포춘 500대 기업 중 92%가 오픈AI 제품을 사용하고 있다. 또 GPT-4o 미니(mini)가 올 7월에 출시된 이후 자동화 API 사용량이 두 배 증가했다.샘 올트먼 오픈AI 최고경영책임자(CEO)는 “사람들이 우리의 도구를 이제 일상적으로 사용하고 있으며, 이는 의료 및 교육과 같은 분야에서 실질적인 변화를 가져오고 있다”며 “일상적인 업무 지원부터 어려운 문제 해결, 창의성 발현까지 다양한 영역에서 도움을 주고 있다”고 말했다.오픈AI는 생성형 AI 챗봇 시장에서 선두 자리를 유지하고 있다. 하지만 테크 기업들이 점유율을 높이고자, 서비스를 업..
캐나다 알버타대 연구진이 최근 ‘인공 신경망’의 한계를 극복하는 방안을 제안하는 논문을 네이처에 발표했습니다. 연구 결과보다 논문에서 정리한 인공 신경망의 한계 부분이 더 눈길을 끌었는데요, 이를 짧게 정리해 보겠습니다. ‘신경망’이라는 단어 들어보셨죠? 인간의 두뇌에서 영감을 얻은 일종의 시스템인데요, LLM이 이러한 신경망을 기반으로 구축됐습니다. 신경망은 마치 뇌의 ‘뉴런’이 연결된 것처럼 입력된 데이터를 여러 단계를 거쳐 가중치를 기반으로 답을 내놓는 방식입니다. 뉴런 간의 연결이 탄탄하고 많을수록 뇌 기능이 뛰어나다고 하듯이, 신경망 또한 마찬가지입니다. 신경망에는 입력과 출력 사이에 ‘은닉층’이라는 것이 있는데요, 이곳에서 많은 데이터를 학습하고 계산을 열심히 할수록 좋은 데이터가 나옵니다...