반응형
반응형

KoNLPy 한국어 처리 패키지

OSS project 한나눔(Hannanum)
한국어 형태소 분석시 + 음차표기

 

 

http://semanticweb.kaist.ac.kr/hannanum/

 

Semantic Web Research Center(Hannanum)

3. 세부 개발 목표 O 기능 개선 - 형태소 분석기의 핵심 기능 중 음운 규칙, 품사 관리 및 사전 관리의 모듈화 - 응용에 맞게 사용할 수 있는 음운 규칙, 품사, 사전을 각각 2가지 이상 제공 예정 -

semanticweb.kaist.ac.kr

 

https://datascienceschool.net/03%20machine%20learning/03.01.02%20KoNLPy%20%ED%95%9C%EA%B5%AD%EC%96%B4%20%EC%B2%98%EB%A6%AC%20%ED%8C%A8%ED%82%A4%EC%A7%80.html

 

KoNLPy 한국어 처리 패키지 — 데이터 사이언스 스쿨

.ipynb .pdf to have style consistency -->

datascienceschool.net

 

형태소 분석

KoNLPy는 다음과 같은 다양한 형태소 분석, 태깅 라이브러리를 파이썬에서 쉽게 사용할 수 있도록 모아놓았다.

반응형
반응형

twitter-korean-text - 트위터에서 만든 오픈소스 한국어 처리기


https://github.com/twitter/twitter-korean-text



트위터에서 만든 오픈소스 한국어 처리기

Scala/Java library to process Korean text with a Java wrapper. twitter-korean-text currently provides Korean normalization and tokenization. Please join our community at Google Forum. The intent of this text processor is not limited to short tweet texts.

스칼라로 쓰여진 한국어 처리기입니다. 현재 텍스트 정규화와 형태소 분석, 스테밍을 지원하고 있습니다. 짧은 트윗은 물론이고 긴 글도 처리할 수 있습니다. 개발에 참여하시고 싶은 분은 Google Forum에 가입해 주세요. 사용법을 알고자 하시는 초보부터 코드에 참여하고 싶으신 분들까지 모두 환영합니다.

twitter-korean-text의 목표는 빅데이터 등에서 간단한 한국어 처리를 통해 색인어를 추출하는 데에 있습니다. 완전한 수준의 형태소 분석을 지향하지는 않습니다.

twitter-korean-text는 normalization, tokenization, stemming, phrase extraction 이렇게 네가지 기능을 지원합니다.

정규화 normalization (입니닼ㅋㅋ -> 입니다 ㅋㅋ, 샤릉해 -> 사랑해)

  • 한국어를 처리하는 예시입니닼ㅋㅋㅋㅋㅋ -> 한국어를 처리하는 예시입니다 ㅋㅋ

토큰화 tokenization

  • 한국어를 처리하는 예시입니다 ㅋㅋ -> 한국어Noun, 를Josa, 처리Noun, 하는Verb, 예시Noun, 입Adjective, 니다Eomi ㅋㅋKoreanParticle

어근화 stemming (입니다 -> 이다)

  • 한국어를 처리하는 예시입니다 ㅋㅋ -> 한국어Noun, 를Josa, 처리Noun, 하다Verb, 예시Noun, 이다Adjective, ㅋㅋKoreanParticle

어구 추출 phrase extraction

  • 한국어를 처리하는 예시입니다 ㅋㅋ -> 한국어, 처리, 예시, 처리하는 예시

Introductory Presentation: Google Slides

Try it here

Gunja Agrawal kindly created a test API webpage for this project: http://gunjaagrawal.com/langhack/

Gunja Agrawal님이 만들어주신 테스트 웹 페이지 입니다. http://gunjaagrawal.com/langhack/

Opensourced here: twitter-korean-tokenizer-api

API

scaladoc

mavendoc

Maven

To include this in your Maven-based JVM project, add the following lines to your pom.xml:

Maven을 이용할 경우 pom.xml에 다음의 내용을 추가하시면 됩니다:

  <dependency>
    <groupId>com.twitter.penguin</groupId>
    <artifactId>korean-text</artifactId>
    <version>4.4</version>
  </dependency>

The maven site is available here http://twitter.github.io/twitter-korean-text/ and scaladocs are here http://twitter.github.io/twitter-korean-text/scaladocs/

Support for other languages.

.net

modamoda kindly offered a .net wrapper: https://github.com/modamoda/TwitterKoreanProcessorCS

node.js

Ch0p kindly offered a node.js wrapper: twtkrjs

Youngrok Kim kindly offered a node.js wrapper: node-twitter-korean-text

Python

Baeg-il Kim kindly offered a Python version: https://github.com/cedar101/twitter-korean-py

Jaepil Jeong kindly offered a Python wrapper: https://github.com/jaepil/twkorean

  • Python Korean NLP project KoNLPy now includes twitter-korean-text. 파이썬에서 쉬운 활용이 가능한 KoNLPy 패키지에 twkorean이 포함되었습니다.

Ruby

jun85664396 kindly offered a Ruby wrapper: twitter-korean-text-ruby

  • This provides access to com.twitter.penguin.korean.TwitterKoreanProcessorJava (Java wrapper).

Jaehyun Shin kindly offered a Ruby wrapper: twitter-korean-text-ruby

  • This provides access to com.twitter.penguin.korean.TwitterKoreanProcessor (Original Scala Class).

Elastic Search

socurites's Korean analyzer for elasticsearch based on twitter-korean-text: tkt-elasticsearch

Get the source 소스를 원하시는 경우

Clone the git repo and build using maven.

Git 전체를 클론하고 Maven을 이용하여 빌드합니다.

git clone https://github.com/twitter/twitter-korean-text.git
cd twitter-korean-text
mvn compile

Open 'pom.xml' from your favorite IDE.

Usage 사용 방법

You can find these examples in examples folder.

examples 폴더에 사용 방법 예제 파일이 있습니다.

from Scala

import com.twitter.penguin.korean.TwitterKoreanProcessor
import com.twitter.penguin.korean.phrase_extractor.KoreanPhraseExtractor.KoreanPhrase
import com.twitter.penguin.korean.tokenizer.KoreanTokenizer.KoreanToken

object ScalaTwitterKoreanTextExample {
  def main(args: Array[String]) {
    val text = "한국어를 처리하는 예시입니닼ㅋㅋㅋㅋㅋ #한국어"

    // Normalize
    val normalized: CharSequence = TwitterKoreanProcessor.normalize(text)
    println(normalized)
    // 한국어를 처리하는 예시입니다ㅋㅋ #한국어

    // Tokenize
    val tokens: Seq[KoreanToken] = TwitterKoreanProcessor.tokenize(normalized)
    println(tokens)
    // List(한국어(Noun: 0, 3), 를(Josa: 3, 1),  (Space: 4, 1), 처리(Noun: 5, 2), 하는(Verb: 7, 2),  (Space: 9, 1), 예시(Noun: 10, 2), 입니(Adjective: 12, 2), 다(Eomi: 14, 1), ㅋㅋ(KoreanParticle: 15, 2),  (Space: 17, 1), #한국어(Hashtag: 18, 4))

    // Stemming
    val stemmed: Seq[KoreanToken] = TwitterKoreanProcessor.stem(tokens)

    println(stemmed)
    // List(한국어(Noun: 0, 3), 를(Josa: 3, 1),  (Space: 4, 1), 처리(Noun: 5, 2), 하다(Verb: 7, 2),  (Space: 9, 1), 예시(Noun: 10, 2), 이다(Adjective: 12, 3), ㅋㅋ(KoreanParticle: 15, 2),  (Space: 17, 1), #한국어(Hashtag: 18, 4))

    // Phrase extraction
    val phrases: Seq[KoreanPhrase] = TwitterKoreanProcessor.extractPhrases(tokens, filterSpam = true, enableHashtags = true)
    println(phrases)
    // List(한국어(Noun: 0, 3), 처리(Noun: 5, 2), 처리하는 예시(Noun: 5, 7), 예시(Noun: 10, 2), #한국어(Hashtag: 18, 4))
  }
}

from Java

import java.util.List;

import scala.collection.Seq;

import com.twitter.penguin.korean.TwitterKoreanProcessor;
import com.twitter.penguin.korean.TwitterKoreanProcessorJava;
import com.twitter.penguin.korean.phrase_extractor.KoreanPhraseExtractor;
import com.twitter.penguin.korean.tokenizer.KoreanTokenizer;

public class JavaTwitterKoreanTextExample {
  public static void main(String[] args) {
    String text = "한국어를 처리하는 예시입니닼ㅋㅋㅋㅋㅋ #한국어";

    // Normalize
    CharSequence normalized = TwitterKoreanProcessorJava.normalize(text);
    System.out.println(normalized);
    // 한국어를 처리하는 예시입니다ㅋㅋ #한국어


    // Tokenize
    Seq<KoreanTokenizer.KoreanToken> tokens = TwitterKoreanProcessorJava.tokenize(normalized);
    System.out.println(TwitterKoreanProcessorJava.tokensToJavaStringList(tokens));
    // [한국어, 를, 처리, 하는, 예시, 입니, 다, ㅋㅋ, #한국어]
    System.out.println(TwitterKoreanProcessorJava.tokensToJavaKoreanTokenList(tokens));
    // [한국어(Noun: 0, 3), 를(Josa: 3, 1),  (Space: 4, 1), 처리(Noun: 5, 2), 하는(Verb: 7, 2),  (Space: 9, 1), 예시(Noun: 10, 2), 입니(Adjective: 12, 2), 다(Eomi: 14, 1), ㅋㅋ(KoreanParticle: 15, 2),  (Space: 17, 1), #한국어(Hashtag: 18, 4)]


    // Stemming
    Seq<KoreanTokenizer.KoreanToken> stemmed = TwitterKoreanProcessorJava.stem(tokens);
    System.out.println(TwitterKoreanProcessorJava.tokensToJavaStringList(stemmed));
    // [한국어, 를, 처리, 하다, 예시, 이다, ㅋㅋ, #한국어]
    System.out.println(TwitterKoreanProcessorJava.tokensToJavaKoreanTokenList(stemmed));
    // [한국어(Noun: 0, 3), 를(Josa: 3, 1),  (Space: 4, 1), 처리(Noun: 5, 2), 하다(Verb: 7, 2),  (Space: 9, 1), 예시(Noun: 10, 2), 이다(Adjective: 12, 3), ㅋㅋ(KoreanParticle: 15, 2),  (Space: 17, 1), #한국어(Hashtag: 18, 4)]


    // Phrase extraction
    List<KoreanPhraseExtractor.KoreanPhrase> phrases = TwitterKoreanProcessorJava.extractPhrases(tokens, true, true);
    System.out.println(phrases);
    // [한국어(Noun: 0, 3), 처리(Noun: 5, 2), 처리하는 예시(Noun: 5, 7), 예시(Noun: 10, 2), #한국어(Hashtag: 18, 4)]

  }
}

Basics

TwitterKoreanProcessor.scala is the central object that provides the interface for all the features.

TwitterKoreanProcessor.scala에 지원하는 모든 기능을 모아 두었습니다.

Running Tests

mvn test will run our unit tests

모든 유닛 테스트를 실행하려면 mvn test를 이용해 주세요.

Tools

We provide tools for quality assurance and test resources. They can be found under src/main/scala/com/twitter/penguin/korean/qa and src/main/scala/com/twitter/penguin/korean/tools.

Contribution

Refer to the general contribution guide. We will add this project-specific contribution guide later.

설치 및 수정하는 방법 상세 안내

Performance 처리 속도

Tested on Intel i7 2.3 Ghz

Initial loading time (초기 로딩 시간): 2~4 sec

Average time per parsing a chunk (평균 어절 처리 시간): 0.12 ms

Tweets (Avg length ~50 chars)

Tweets100K200K300K400K500K600K700K800K900K1M
Time in Seconds57.59112.09165.05218.11270.54328.52381.09439.71492.94542.12
Average per tweet: 0.54212 ms

Benchmark test by KoNLPy

Benchmark test

From http://konlpy.org/ko/v0.4.2/morph/

Author(s)


반응형
반응형

gensim + word2vec 모델 만들어서 사용하기 



참고 : https://www.lucypark.kr/courses/2015-ba/text-mining.html



#Load data

from konlpy.corpus import kobill

docs_ko = [kobill.open(i).read() for i in kobill.fileids()]


#Tokenize

from konlpy.tag import Twitter; t = Twitter()

pos = lambda d: ['/'.join(p) for p in t.pos(d)]

texts_ko = [pos(doc) for doc in docs_ko]


#Train

from gensim.models import word2vec

wv_model_ko = word2vec.Word2Vec(texts_ko)

wv_model_ko.init_sims(replace=True)

wv_model_ko.save('ko_word2vec.model')    #model create


#Test - 유사도 분석

wv_model_ko.most_similar(pos('정부'))

wv_model_ko.most_similar(pos('초등학교'))





  * 저장된 model 사용하기 : https://radimrehurek.com/gensim/models/word2vec.html


Initialize a model with e.g.:

>>> model = Word2Vec(sentences, size=100, window=5, min_count=5, workers=4)

Persist a model to disk with:

>>> model.save(fname)
>>> model = Word2Vec.load(fname)  # you can continue training with the loaded model!

The word vectors are stored in a KeyedVectors instance in model.wv. This separates the read-only word vector lookup operations in KeyedVectors from the training code in Word2Vec.

>>> model.wv['computer']  # numpy vector of a word
array([-0.00449447, -0.00310097,  0.02421786, ...], dtype=float32)


model 이 잘 불러와졌는지 확인하려면 model의 내용을 보자. 

model.vocab 하며 내용을 볼 수 있다. 

most_similar 에서 vocaburary에 단어가 없다고 에러나오면 내용을 확인 후 다시 검색해보면 된다. 

저장된 vocab이 '국어' 인지, '국어/Noun' 인지 확인 바람요! 


>>>len(model.vocab)

9867

>>>model.vocab 



Code for the word2vec HTTP server running at https://rare-technologies.com/word2vec-tutorial/#bonus_app



*** 대화 형 word2vec 데모 용 전체 HTTP 서버 코드 : 

     https://github.com/RaRe-Technologies/w2v_server_googlenews



모델 저장 및로드

표준 gensim 메소드를 사용하여 모델을 저장 /로드 할 수 있습니다.

1
2
model.save('/tmp/mymodel')
new_model = gensim.models.Word2Vec.load('/tmp/mymodel')

내부적으로 피클을 사용하는 선택적 mmap를 프로세스 간 메모리 공유 디스크 파일에서 직접 가상 메모리에 모델의 내부 큰 NumPy와 행렬을 보내고 '.

또한 텍스트 및 이진 형식을 사용하여 원본 C 도구로 만든 모델을로드 할 수 있습니다.

1
2
model = Word2Vec.load_word2vec_format('/tmp/vectors.txt', binary=False)
# using gzipped/bz2 input works too, no need to unzip:
model = Word2Vec.load_word2vec_format('/tmp/vectors.bin.gz', binary=True)

온라인 교육 / 훈련 재개

고급 사용자는 모델을로드하고 더 많은 문장으로 계속 교육 할 수 있습니다.

1
2
model = gensim.models.Word2Vec.load('/tmp/mymodel')
model.train(more_sentences)

시뮬레이트 할 학습 속도 감소에 따라 total_words 매개 변수를 train ()에 맞게 조정해야 할 수도 있습니다 .

C 도구 load_word2vec_format ()에 의해 생성 된 모델로는 교육을 재개 할 수 없습니다 당신은 여전히 ​​그것들을 질의 / 유사성을 위해 사용할 수 있지만, 훈련에 필수적인 정보 (보캐 트리)가 거기에 없습니다.

모델 사용

Word2vec는 여러 단어 유사 작업을 즉시 지원합니다.

1
2
4
5
6
model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1)
[('queen', 0.50882536)]
model.doesnt_match("breakfast cereal dinner lunch";.split())
'cereal'
model.similarity('woman', 'man')
0.73723527

응용 프로그램에서 원시 출력 벡터가 필요한 경우에는 단어 단위로 이들에 액세스 할 수 있습니다

1
2
model['computer'# raw NumPy vector of a word
array([-0.00449447, -0.003100970.02421786, ...], dtype=float32)

... 또는 en-masse를 model.syn0 의 2D NumPy 행렬로 사용 하십시오 .



...

반응형

+ Recent posts