반응형

Lightning-fast cluster computing


Apache Spark™ is a fast and general engine for large-scale data processing.


Spark Overview

Apache Spark is a fast and general-purpose cluster computing system. It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming.

Downloading

Get Spark from the downloads page of the project website. This documentation is for Spark version 2.1.1. Spark uses Hadoop’s client libraries for HDFS and YARN. Downloads are pre-packaged for a handful of popular Hadoop versions. Users can also download a “Hadoop free” binary and run Spark with any Hadoop version by augmenting Spark’s classpath. Scala and Java users can include Spark in their projects using its maven cooridnates and in the future Python users can also install Spark from PyPI.

If you’d like to build Spark from source, visit Building Spark.

Spark runs on both Windows and UNIX-like systems (e.g. Linux, Mac OS). It’s easy to run locally on one machine — all you need is to have javainstalled on your system PATH, or the JAVA_HOME environment variable pointing to a Java installation.

Spark runs on Java 7+, Python 2.6+/3.4+ and R 3.1+. For the Scala API, Spark 2.1.1 uses Scala 2.11. You will need to use a compatible Scala version (2.11.x).

Note that support for Java 7 and Python 2.6 are deprecated as of Spark 2.0.0, and support for Scala 2.10 and versions of Hadoop before 2.6 are deprecated as of Spark 2.1.0, and may be removed in Spark 2.2.0.










.

반응형

+ Recent posts