반응형
반응형

파이썬 가상환경과 아나콘다 가상환경은 프로젝트 간의 종속성 충돌을 피하고, 각 프로젝트별로 필요한 패키지를 독립적으로 관리할 수 있도록 도와줍니다. 아래는 각각의 가상환경 사용법을 설명합니다.
 



이와 같이 Python의 `venv` 모듈과 Anaconda의 `conda` 명령어를 사용하여 가상환경을 만들고 관리할 수 있습니다. 가상환경을 통해 프로젝트 간의 종속성 문제를 효과적으로 관리할 수 있습니다.

반응형
반응형

Python에서 현재 설치된 라이브러리(패키지) 목록을 확인하는 방법은 여러 가지가 있습니다. 
주로 pip 패키지 관리자를 사용하여 설치된 패키지 목록을 조회합니다. 
아래는 다양한 방법으로 현재 설치된 라이브러리 목록을 확인하는 방법을 설명합니다.

1. pip list 명령어 사용

가장 일반적인 방법은 터미널 또는 명령 프롬프트에서 pip list 명령을 사용하여 설치된 모든 패키지 목록을 조회하는 것입니다.


pip list




위 명령을 실행하면 설치된 모든 패키지의 목록이 출력됩니다.


2. pip freeze 명령어 사용

pip freeze 명령은 pip list와 유사하게 현재 환경에 설치된 패키지와 그 버전을 출력합니다. 이 명령은 보통 requirements.txt 파일을 생성하는 데 사용됩니다.


pip freeze




3. Python 스크립트를 통한 확인

Python 스크립트 내에서 pkg_resources 모듈을 사용하여 현재 설치된 패키지를 조회할 수 있습니다.

import pkg_resources

# 현재 설치된 패키지 목록 조회
installed_packages = pkg_resources.working_set
installed_packages_list = sorted(["%s==%s" % (i.key, i.version) for i in installed_packages])

for package in installed_packages_list:
    print(package)




4. conda list (conda 환경에서)

만약 Anaconda 또는 Miniconda와 같은 conda 패키지 관리자를 사용하고 있다면, conda list 명령을 사용하여 현재 환경에 설치된 패키지 목록을 확인할 수 있습니다.

conda list



위 방법 중 하나를 선택하여 현재 Python 환경에 설치된 모든 패키지 목록을 확인할 수 있습니다. 

주로 pip list 명령이 가장 일반적이고 널리 사용되는 방법입니다.

반응형
반응형

python, anaconda 가상환경에서 파이썬 버전 확인 및 변경

 

VScode에서 인터프리터 연결이 제대로 안될때. 버전이 낮아서 인터프리터 실행못할때 확인 필요

 

가상환경이름을 p_pygame  이라고 가정하고.

 

0. conda  activate (가상환경명) : 가상환경 실행.

1. python -V : 파이썬 버전 확인.

2. conda search python : 사용 가능한 python list 확인.

3. conda install python=x.x.x : 입력 버전으로 파이썬 버전이 변경됨.

4. conda deactivate

5. conda activate p_pygame   : 가상환경 실행.

6. python -V : 변경된 파이썬 버전을 확인할 수 있음.

반응형
반응형
가상환경(virtualenv)은 여러 개의 파이썬 프로젝트가 하나의 컴퓨터에서 충동을 일으키지 않고 존재할 수 있도록 해줍니다. virtualenv는 각 프로그램별로 완전히 독립적인 가상의 환경을 만들어서 각 프로그램별로 라이브러리 모듈등의 버전을 별도로 지정할 수 있게 합니다. 즉 한 컴퓨터에 여러 개발환경을 서로 독립적으로 설치, 실행할 수 있게 해줍니다.
왜 가상 환경을 만들어서 작업을 진행할까? 한마디로 요약하자면 "독립적인 작업환경에서 작업할 수 있다." 로 말할 수 있습니다.
프로젝트를 진행하다보면 여러 라이브러리, 패키지를 다운로드하여서 사용하게 됩니다. 그러다 보면 각 라이브러리들끼리 충돌을 일으키는 문제를 발생시키는 경우가 있습니다. 또는, 특정 버전과 호환하는 경우가 생겨서 최신 버전과 이전 버전 중 선택해야 하는 상황이 발생됩니다. 가상환경은 각 프로그램별로 라이브러리 모듈 등의 버전을 별도로 지정할 수 있게 합니다. 즉 한 컴퓨터에 여러 개발환경을 서로 독립적으로 설치, 실행할 수 있게 해줍니다.
 
다음 명령어를 통해 가상환경이 만들어 집니다.
 
>conda create -n <환경명> python=<버전(ex:3.5이나 3.7 등)>
 
본 교재의 모든 예제들은 다음과 같은 명령으로 만들어 실행하도록 합니다. 본인 스스로 가상 환경을 관리할 수 있다면 다른 이름을 사용해도 관계없습니다.
 
>conda create -n koreait python=3.7
 
- koreait 은 가상환경 이름을 의미합니다.
- python=3.7 는 파이썬 3.7 환경으로 가상환경을 만들어라 하는 것 입니다. 다른 패키지들과의 호환성을 위해 본 교재는 파이썬 3.7를 사용합니다.
- numpy ~ statsmodels : 사용해야 할 라이브러리들을 지정할 수 있습니다. 필요시 pip install 을 사용하여 개별적으로 설치 할 수도 있습니다.
위의 명령을 실행하면 "c:\users\사용자계정\anaconda3\env\koreait" 라는 디렉토리가 생성되면서 그 안에 필요한 것들을 설치하겠냐고 묻게 됩니다. 당연히 "y" 를 눌러서 설치를 합니다.
내가 제대로 환경을 만들었는지 다음 명령을 실행하여 확인합니다.
>conda env list
내가 만든 환경이 리스트에 존재한다면 성공적으로 만들어 진 것입니다.
이후에 가상환경을 활성화하고 싶으면 activate 명령어로 해당 가상환경을 활성화합니다.
activate 가상환경명 혹은 conda activate 가상환경명
>conda activate koreait
>activate koreait
(base)표시가 (koreait) 으로 변경되었음을 볼 수 있습니다.
비활성화 시키고 싶으면 koreait 이 활성화되어 있는 상태에서
>deactivate 혹은 >conda deactivate
라고 해 주면 됩니다.
가상 환경을 제거하고 싶으면 아나콘다 터미널에서 (base)환경을 확인하고 다음을 입력한 후 실행하면 됩니다.
>conda remove -n name --all
만들어진 koreait 환경을 제거하고 다시 설치하고 싶다면 다음 명령으로 가상환경을 제거하고 다시 만들어 주시면 됩니다.
(base)>conda remove -n koreait --all
Anaconda Prompt에서 (koreait )이 표시되어 있다면 deactivate 를 입력하여 (base)환경으로 돌아옵니다. (base) 환경에서 python --version 을 실행해 봅니다. 그리고 “conda activate koreait ” 명령으로 가상환경 (koreait )을 활성화시킨 후 python --version 을 실행해 봅니다. (base) 환경에서 파이썬 버전은 3.7.2 이고 (koreait ) 환경에서 파이썬 버전은 3.5.6 이 적용됨을 확인할 수 있습니다.
가상환경 (koreait )에서 파이썬이 제대로 동작하는지 “Hello Workd” 예제를 사용하여 확인해 보자.
Anaconda Prompt에서 (koreait ) 환경에서 “python”을 입력합니다.
>>> 표시가 나타나면 print(“Hello World”) 를 입력하고 엔터를 누릅니다.
 
반응형
반응형

conda update

 


Anaconda Prompt 에 들어오면 conda 패키지 관리자를 사용할 수 있게 됩니다.


> conda activate main

1.우선 conda 자체를 업그레이드 해줍니다.

> conda update -n base conda

2.다음으로 설치된 파이썬 패키지를 모두 최신 버전으로 업데이트 해줍니다.

>conda update -all 

3. tensorflow 를 설치합니다

>pip install tensorflow 

4.keras도 설치해줍니다

>pip install keras
반응형
반응형

mpld3 - Bringing Matplotlib to the Browser

https://mpld3.github.io/install.html

 

Installing mpld3 — Bringing Matplotlib to the Browser

Dependencies The mpld3 package is compatible with Python versions 2.6, 2.7, 3.3, and 3.4. It requires matplotlib version 1.3+ and jinja2 version 2.7+. Optionally, mpld3 can be used within the IPython notebook, and requires IPython version 1.0+, and prefera

mpld3.github.io

 mpld3는 매트플롯립과 d3js를 사용해서 웹의 인터랙티브 데이터 시각화 를 가능하도록 만드는 것이 목적이라고 하네요. 간단하게, matpllitb의 그래픽을 html코드로(코드를 뜯어보면, 사실 거의 d3js 코드입니다만), 변환해줍니다. 이걸 가지고, 차트 같은 것을 좀 더 편하게 변환할 수 있겠죠.

https://anaconda.org/conda-forge/mpld3

Installers

Info: This package contains files in non-standard labels.

conda install 

  •  linux-64  v0.3
  •  win-32  v0.3
  •    noarch  v0.5.7
  •  osx-64  v0.3
  •  win-64  v0.3
To install this package with conda run one of the following:
conda install -c conda-forge mpld3
conda install -c conda-forge/label/gcc7 mpld3
conda install -c conda-forge/label/cf201901 mpld3
conda install -c conda-forge/label/cf202003 mpld3
반응형

+ Recent posts