반응형
반응형

한국어는 교착어이다.

한국어는 띄어쓰기가 영어보다 잘 지켜지지 않는다.

NLTK와 KoNLPy를 이용한 영어, 한국어 토큰화 실습

NLTK에서는 영어 코퍼스에 품사 태깅 기능을 지원하고 있습니다. 품사를 어떻게 명명하고, 태깅하는지의 기준은 여러가지가 있는데, NLTK에서는 Penn Treebank POS Tags라는 기준을 사용합니다. 실제로 NLTK를 사용해서 영어 코퍼스에 품사 태깅을 해보도록 하겠습니다.

nltk 에러나면  CMD에서 pip install nltk

>>> from nltk.tokenize import word_tokenize
Traceback (most recent call last):
  File "<pyshell#19>", line 1, in <module>
    from nltk.tokenize import word_tokenize
ModuleNotFoundError: No module named 'nltk'

>>> from nltk.tokenize import word_tokenize

>>> text="I am actively looking for Ph.D. students. and you are a Ph.D. student."
>>> print(word_tokenize(text))

['I', 'am', 'actively', 'looking', 'for', 'Ph.D.', 'students', '.', 'and', 'you', 'are', 'a', 'Ph.D.', 'student', '.']

>>> from nltk.tag import pos_tag
>>> x=word_tokenize(text)
>>> pos_tag(x)

[('I', 'PRP'), ('am', 'VBP'), ('actively', 'RB'), ('looking', 'VBG'), ('for', 'IN'), ('Ph.D.', 'NNP'), ('students', 'NNS'), ('.', '.'), ('and', 'CC'), ('you', 'PRP'), ('are', 'VBP'), ('a', 'DT'), ('Ph.D.', 'NNP'), ('student', 'NN'), ('.', '.')]

영어 문장에 대해서 토큰화를 수행하고, 이어서 품사 태깅을 수행하였습니다. Penn Treebank POG Tags에서 PRP는 인칭 대명사, VBP는 동사, RB는 부사, VBG는 현재부사, IN은 전치사, NNP는 고유 명사, NNS는 복수형 명사, CC는 접속사, DT는 관사를 의미합니다.

한국어 자연어 처리를 위해서는 KoNLPy("코엔엘파이"라고 읽습니다)라는 파이썬 패키지를 사용할 수 있습니다. 코엔엘파이를 통해서 사용할 수 있는 형태소 분석기로 Okt(Open Korea Text), 메캅(Mecab), 코모란(Komoran), 한나눔(Hannanum), 꼬꼬마(Kkma)가 있습니다.

 

한국어 자연어 처리를 위해서는 KoNLPy("코엔엘파이"라고 읽습니다)라는 파이썬 패키지를 사용할 수 있습니다. 코엔엘파이를 통해서 사용할 수 있는 형태소 분석기로 Okt(Open Korea Text), 메캅(Mecab), 코모란(Komoran), 한나눔(Hannanum), 꼬꼬마(Kkma)가 있습니다.

한국어 NLP에서 형태소 분석기를 사용한다는 것은 단어 토큰화가 아니라 정확히는 형태소(morpheme) 단위로 형태소 토큰화(morpheme tokenization)를 수행하게 됨을 뜻합니다. 여기선 이 중에서 Okt와 꼬꼬마를 통해서 토큰화를 수행해보도록 하겠습니다. (Okt는 기존에는 Twitter라는 이름을 갖고있었으나 0.5.0 버전부터 이름이 변경되어 인터넷에는 아직 Twitter로 많이 알려져있으므로 학습 시 참고바랍니다.)

 

>>> from konlpy.tag import Okt
>>> okt=Okt()

>>> print(okt.morphs("열심히 코딩한 당신, 연휴에는 여행을 가봐요"))

['열심히', '코딩', '한', '당신', ',', '연휴', '에는', '여행', '을', '가봐요']

>>> print(okt.pos("열심히 코딩한 당신, 연휴에는 여행을 가봐요"))

[('열심히', 'Adverb'), ('코딩', 'Noun'), ('한', 'Josa'), ('당신', 'Noun'), (',', 'Punctuation'), ('연휴', 'Noun'), ('에는', 'Josa'), ('여행', 'Noun'), ('을', 'Josa'), ('가봐요', 'Verb')]

>>> print(okt.nouns("열심히 코딩한 당신, 연휴에는 여행을 가봐요"))

['코딩', '당신', '연휴', '여행']

위의 예제는 Okt 형태소 분석기로 토큰화를 시도해본 예제입니다.

1) morphs : 형태소 추출
2) pos : 품사 태깅(Part-of-speech tagging)
3) nouns : 명사 추출

위 예제에서 사용된 각 메소드는 이런 기능을 갖고 있습니다. 앞서 언급한 코엔엘파이의 형태소 분석기들은 공통적으로 이 메소드들을 제공하고 있습니다. 위 예제에서 형태소 추출과 품사 태깅 메소드의 결과를 보면, 조사를 기본적으로 분리하고 있음을 확인할 수 있습니다. 그렇기 때문에 한국어 NLP에서 전처리에 형태소 분석기를 사용하는 것은 꽤 유용합니다.

 

이번에는 꼬꼬마 형태소 분석기를 사용하여 같은 문장에 대해서 토큰화를 진행해볼 것입니다.

>>> from konlpy.tag import Kkma
>>> kkma=Kkma()
>>> print(kkma.morphs("열심히 코딩한 당신, 연휴에는 여행을 가봐요"))

['열심히', '코딩', '하', 'ㄴ', '당신', ',', '연휴', '에', '는', '여행', '을', '가보', '아요']

>>> print(kkma.pos("열심히 코딩한 당신, 연휴에는 여행을 가봐요"))

[('열심히', 'MAG'), ('코딩', 'NNG'), ('하', 'XSV'), ('ㄴ', 'ETD'), ('당신', 'NP'), (',', 'SP'), ('연휴', 'NNG'), ('에', 'JKM'), ('는', 'JX'), ('여행', 'NNG'), ('을', 'JKO'), ('가보', 'VV'), ('아요', 'EFN')]

>>> print(kkma.nouns("열심히 코딩한 당신, 연휴에는 여행을 가봐요"))

['코딩', '당신', '연휴', '여행']

앞서 사용한 Okt 형태소 분석기와 결과가 다른 것을 볼 수 있습니다. 각 형태소 분석기는 성능과 결과가 다르게 나오기 때문에, 형태소 분석기의 선택은 사용하고자 하는 필요 용도에 어떤 형태소 분석기가 가장 적절한지를 판단하고 사용하면 됩니다. 예를 들어서 속도를 중시한다면 메캅을 사용할 수 있습니다.

 

 

출처 : wikidocs.net/21698

 

위키독스

온라인 책을 제작 공유하는 플랫폼 서비스

wikidocs.net

 

반응형
반응형

Word Tokenization 단어 토큰화

 

자연어 처리에서 크롤링 등으로 얻어낸 코퍼스 데이터가 필요에 맞게 전처리되지 않은 상태라면, 해당 데이터를 사용하고자하는 용도에 맞게 토큰화(tokenization) & 정제(cleaning) & 정규화(normalization)하는 일을 하게 됩니다. 이번 챕터에서는 그 중에서도 토큰화에 대해서 배우도록 합니다.

주어진 코퍼스(corpus)에서 토큰(token)이라 불리는 단위로 나누는 작업을 토큰화(tokenization)라고 부릅니다. 토큰의 단위가 상황에 따라 다르지만, 보통 의미있는 단위로 토큰을 정의합니다.

이 챕터에서는 토큰화에 대한 발생할 수 있는 여러가지 상황에 대해서 언급하여 토큰화에 대한 개념을 이해합니다. 뒤에서 파이썬과 NLTK 패키지, KoNLPY를 통해 실습을 진행하며 직접 토큰화를 수행해보겠습니다.

 

 


## word_tokenize는 Don't를 Do와 n't로 분리하였으며, 
## 반면 Jone's는 Jone과 's로 분리한 것을 확인할 수 있습니다.
>from nltk.tokenize import word_tokenize  
>print(word_tokenize("Don't be fooled by the dark sounding name, Mr. Jone's Orphanage is as cheery as cheery goes for a pastry shop."))  
['Do', "n't", 'be', 'fooled', 'by', 'the', 'dark', 'sounding', 'name', ',', 'Mr.', 'Jone', "'s", 'Orphanage', 'is', 'as', 'cheery', 'as', 'cheery', 'goes', 'for', 'a', 'pastry', 'shop', '.']  


## WordPunctTokenizer는 구두점을 별도로 분류하는 특징을 갖고 있기때문에, 앞서 확인했던
## word_tokenize와는 달리 Don't를 Don과 '와 t로 분리하였으며, 
## 이와 마찬가지로 Jone's를 Jone과 '와 s로 분리한 것을 확인할 수 있습니다.
>from nltk.tokenize import WordPunctTokenizer  
>print(WordPunctTokenizer().tokenize("Don't be fooled by the dark sounding name, Mr. Jone's Orphanage is as cheery as cheery goes for a pastry shop."))
['Don', "'", 't', 'be', 'fooled', 'by', 'the', 'dark', 'sounding', 'name', ',', 'Mr', '.', 'Jone', "'", 's', 'Orphanage', 'is', 'as', 'cheery', 'as', 'cheery', 'goes', 'for', 'a', 'pastry', 'shop', '.']  


## 케라스 또한 토큰화 도구로서 text_to_word_sequence를 지원합니다. 이번에는 케라스로 토큰화를 수행해봅시다.
## 케라스의 text_to_word_sequence는 기본적으로 모든 알파벳을 소문자로 바꾸면서 온점이나 
## 컴마, 느낌표 등의 구두점을 제거합니다. 하지만 don't나 jone's와 같은 경우 아포스트로피는 보존하는 것을 볼 수 있습니다.
>from tensorflow.keras.preprocessing.text import text_to_word_sequence
>print(text_to_word_sequence("Don't be fooled by the dark sounding name, Mr. Jone's Orphanage is as cheery as cheery goes for a pastry shop."))
["don't", 'be', 'fooled', 'by', 'the', 'dark', 'sounding', 'name', 'mr', "jone's", 'orphanage', 'is', 'as', 'cheery', 'as', 'cheery', 'goes', 'for', 'a', 'pastry', 'shop']


## 표준으로 쓰이고 있는 토큰화 방법 중 하나인 Penn Treebank Tokenization의 규칙에 대해서 소개하고, 토큰화의 결과를 보도록 하겠습니다.
## 규칙 1. 하이푼으로 구성된 단어는 하나로 유지한다.
## 규칙 2. doesn't와 같이 아포스트로피로 '접어'가 함께하는 단어는 분리해준다. 
>from nltk.tokenize import TreebankWordTokenizer
>tokenizer=TreebankWordTokenizer()
>text="Starting a home-based restaurant may be an ideal. it doesn't have a food chain or restaurant of their own."
>print(tokenizer.tokenize(text))
['Starting', 'a', 'home-based', 'restaurant', 'may', 'be', 'an', 'ideal.', 'it', 'does', "n't", 'have', 'a', 'food', 'chain', 'or', 'restaurant', 'of', 'their', 'own', '.']
반응형

+ Recent posts