반응형

베이즈 확률  http://hamait.tistory.com/742


확률


확률은 매우 간단합니다. 주사위로 생각해 봅시다.


주사위 1개를 던저 나오는 눈의 수를 생각 할때 , 주사위 던지는 조작을 "시행"이라고 합니다.


이 시행으로 얻어진 결과 중에서 조건에 맞는 결과 집합을 "사상" 이라고 합니다.


만약 홀수가 나오는 사상이라면 시행의 결과가 1,3,5 인 눈의 집합이 됩니다.


결국 공식을 다음과 같이 정의 할 수 있습니다.


확률 P =   문제 삼고 있는 사상이 일어나는 경우의 수 (A) /  일어날 수 있는 모든 경우의 수 (U) 



곱사상


두 사상 A,B 가 있다고 합시다.


- A 는 4 이하의 눈이 나오는 사상 


- B 는 짝수가 나오는 사상 


A 와 B 가 동시에 일어나는 "동시확률" 은 ?


A 는 4/6 


B 는 3/6  


A * B = 1/3     즉 두개의 사상이 함께 일어날 확률은 두 사상을 곱하여 계산합니다. 




조건부 확률


어떤 사상 A 가 일어났다고 하는 조건 아래서 사상 B 가 일어나는 확률을 , A 의 조건 아래서 B 가 일어나는 "조건부 확률" 이라고 합니다.


P(B|A) 라고 합니다. ( A 가 일어난 후에 B가 일어날 확률 ) 




P(B | A)    =  '4 이하의 눈이 나왔을 때 그 눈이 짝수 일 확률' =   2/4 


P(A | B)    = '짝수의 눈이 나왔을때 그 눈이 4이하일 확률' = 2/3




승법정리


P(A∩B) = P(A)P(B|A) = P(B)P(A|B) 


검증해볼가요?  (위의 주사위 확률을 문제로 삼고 진행해 봅시다) 


A 사상과 B 의 사상이 함께 일어날 확률은?  위 곱사상 편에서 보면  1/3 이었습니다.


P(A) 는 ?  4/6  이 었지요.


P(B|A) 는 ? 2/4 였습니다 ( 위의 조건부 확률에서 확인) 


P(A)와 P(B|A) 를 곱하면 ?   네 1/3 이 됩니다. 




베이즈 정리는 이 승법정리에서 간단히 유도 됩니다. 


베이즈 정리 


위의 승법정리를 토대로 간단히 다음과 같은 식이 얻어집니다.

 

P(AB)=P(B)P(A)P(BA)

​ 


위에서 A 나 B 로 하면 먼가 이해하기 힘들거 같아서 

A 를 H 로 바꾸고 (Hypothesis :  '원인' 혹은 '가정' )

B 를 D 로 바꾸어 보겠습니다. ( Data :  '결과' 혹은 '데이터') 


P(HD)=P(D)P(H)P(DH)

​ 

위의 정리는 이렇게 말하고 있습니다.


P(H | D) :   결과 데이터가 이렇게 이렇게 나왔는데 , 이렇게 결과 나오려면 어떤 원인이 있었던 것일까??

P(D)    :      모든 결과 (어떤 가설에든 포함되는 데이터의 비율로 , 한정 상수라고도 한다) 

P (H)   :    (결과 데이터 D 를 얻기 전에)  원인인 H가 성립될 확률 

P(D | H) : 원인 H 가 일어났을때 데이터 D 가 얻어질 확률 


.

반응형

+ Recent posts