반응형
반응형

챗봇, 혁신적 저널리즘 출구될까


http://www.bloter.net/archives/258321


디지털 미디어 업계에는 매년 새로운 키워드가 등장한다. 소셜, 빅데이터, 알고리즘, 사물인터넷, 클라우드 등 전에는 거의 들어보지 못했던 단어들이 었다. 그런데 올해는 특이하다. 우리가 익히 알고 있던 단어가 새로운 키워드로 등장했다. ‘메신저’다.


1990년대 중반부터 우리가 사용해 오던 서비스다. 메신저는 간단한 질문이나 확인, 회의나 작업 조정, 즉석 친교 만남 조정, 친구나 가족과 지속적인 연락 등을 위하여 주로 사용되면서 큰 인기를 끌어왔다. 이러한 가운데 스마트폰 보급률이 2015년을 기준으 로 83.2% 1에 이를 정도로 대중화되면서 모바일 메신저의 활용이 급속히 늘어났다. 이를 입증하듯 우리나라의 대표적 모바일 메신저인 카카오톡의 경우 지난 1분기 기준으로 한 달 평균 적극 이용자수가 4,117만 명 2에 이르고 있다. 우리나라 전체 국민 중 80% 이상이 매월 카카오톡을 이용하고 있다는 뜻이다.


새롭다고 하기에는 너무나 많은 사람이 이미 사 용하고 있는데 왜 또 메신저인가? 메신저 뒤에 붙은 ‘챗봇(chatbot)’ 때문이다. 챗봇이란 전자게시판이나 통신망에서 여러 사용자가 다양한 주제를 가지고 실시간으로 모니터 화면을 통하여 대화를 나누는 채팅과 자동으로 사람이 하던 일을 수행하는 기계인 로봇에서 한 글자씩을 따와 만들어진 용어로 인공지능(AI)을 기반으로 사람과 자동으로 대화를 나누는 소프트웨어를 말한다.


페이스북의 차세대 중심 ‘챗봇’


[사진1] 페이스북은 일반 챗봇 개발자들을 위해 인공지능 엔진 ‘위트닷에이아이’를 제공하기도 했다. ‘위트닷에이아이’를 통한 챗봇 학습 화면.


챗봇은 사람이 아닌 일종의 인공지능이라고 할 수 있는 ‘(로)봇’이 자동으로 이용자에게 메시지를 보내고 이에 대한 이용자의 질문에 실시간으로 응답 하면서 다양한 기능 활용을 유도한다. 이용자의 질문을 분석해 자동으로 답변을 제시하는 방식으로 작동하는 챗봇은 메신저 플랫폼을 활용한 일종의 가상 비서라고도 할 수 있다. 메신저라는 개인적 커뮤니케이션 도구를 통해 대화를 나누기 때문에 그동안 알기 어려웠던 개인의 미세한 맥락까지 파악할 수 있어 새로운 수익원에 항상 목말라 하는 기업들에게 새로운 기회로 받아들여지고 있다. 챗봇은 “모바일에서 앱 이후 가장 중요한 것”(Hadfield, 2016. 3. 17.) 3이라는 전망까지 나올 만큼 크게 주목받고 있다.


기업뿐만 아니라 미국 공화당 대선 경선 후보인 도널드 트럼프도 ‘드럼프봇(DRUMPF Bot)’으로 명명된 챗봇 4을 개발해 유권자들과 대화를 나누고 있을 정도다. 구글, 마이크로소프트, 라인, 위챗, 텔레그램 등 글로벌 IT 회사를 비롯한 거의 대부분의 메신저 서비스 회사들이 챗봇 개발에 열을 올리고 있다. 전 세계 최대 소셜네트워크 서비스인 페이스북이 현지 시각으로 지난 4월 12일 ‘F8 2016’ 콘퍼런스를 통해 메신저 챗봇 플랫폼을 선보인 이유가 자연스럽게 설명된다. 마크 저커버그 페이스북 CEO는 이번 F8 기조연설에서 “메신저 챗봇앱은 앞으로 5년간 페이스북의 중심이 될 것이다”라고 말했다.


플랫폼은 이용자 사이의 거래에 필요한 구성 요소와 규칙의 집합이라고 할 수 있다(Eisenmann, et al., 2009) 5. 플랫폼의 구성 요소에는 소프트웨어, 하드웨어 등이 모두 포함되며 규칙은 플랫폼 참여자들 사이의 이해관계를 조율하는 역할을 한다. 플랫폼 제공자들은 다양한 기술적 요인들로 이루어진 구성 요소들과 규칙을 만들어 배포하고 이를 지지하는 집단 및 개인이 등장하면서 점차 플랫폼이 확산된다. 페이스북이 지난 4월 F8에서 발표한 것 중 하나가 페이스북 메신저 플랫폼의 구성 요소들과 규칙 6이었다.


페이스북 메신저 플랫폼의 구성 요소 중 핵심은 이용자들과 메시지를 주고받을 수 있도록 해주는 송신/수신 API 7다. API는 일반적인 컴퓨터 응용 프로그램에서 사용할 수 있도록 운영체제나 프로그래밍 언어가 제공하는 기능을 제어할 수 있게 만든 인터페이스 혹은 규칙을 말한다. 이 인터페이스에 따라 작성하면, 페이스북 메신저를 통해 사용자와 메시지를 주고받을 수 있다. 채팅창에 펼쳐지는 대화 내용 형식이나 버튼 모양도 설정이 가능하다. 그런데 이러한 플랫폼이 없던 시절에도 우리는 페이스북 메신저를 통해 대화를 주고받았다. 이번에 발표한 송신/수신 API는 사람을 위한 것이 아니다. 자동으로 사용자와 대화를 나누는 (로)봇, 즉 챗봇을 위한 것이다.


챗봇은 인공지능 기술과 텍스트 메시지를 기반으로 하는 일종의 자동 대화형 소프트웨어다. 이용자는 사람이 아닌 봇과 대화를 나누지만 실제 사람과 대화하는 것과 같은 친숙한 느낌을 가지면서 인터넷 검색, 뉴스, 쇼핑, 결제 등과 같은 다양한 서비스를 이용할 수 있다. 봇이 사람처럼 대화를 나누기 위해 필요한 기술이 인공지능이다. 이를 위해서는 학습된 데이터가 필요하지만 일반 개발자나 규모가 작은 곳에서는 관련한 기술을 보유하고 있기가 쉽 지 않다. 페이스북은 이들을 위해 자신들의 학습 데이터에 기반한 봇 인공지능 엔진 기술을 함께 제공 한다. ‘위트닷에이아이(wit.ai)’ 8라는 봇엔진이다.


아직은 뉴스 추천 서비스 수준


[사진2] 페이스북 메신저 플랫폼을 이용해 실제 서비스를 실시 중인 CNN 페이스북 뉴스 챗봇의 대화 화면. 아직은 사람처럼 자연스러운 대화를 나누지는 못하고 질문을 단순 검색 문장으로 이해하여 답변하는 수준이다.


봇엔진은 인공지능 채팅봇을 쉽게 제작할 수 있도록 돕는다. 베타 수준인 위트닷에이아이 봇엔진은 충분한 데이터가 없는 초기 개발자가 [사진1]과 같이 규칙에 따라 ‘대화(story)’를 진행하고 몇몇 대화 들이 쌓이면 그것을 기계가 학습하도록 유도한다. 따로 코딩이 필요하지도 않다. 예를 들어, “한국언론 진흥재단에 어떻게 가나요”라는 질문을 입력하고, “1호선 시청역 4번 출구로 나와 프레스센터 쪽으로 50m가량 가세요”라는 답변을 입력한다. 이 대화들에 등장하는 각 개체명은 장소, 기관 등 기준에 따라 등록된다. 이렇듯 대화들을 학습한 내용에 따라 봇 엔진은 봇이 다음에 할 말을 예측한다. 이 예측에는 위트닷에이아이가 이미 구축해 놓은 데이터들이 결 합되기에 새로 봇을 만드는 개발자들이 너무 많은 학습을 진행하지 않아도 된다. 이후 실제 사용 내용에 따라 봇 엔진은 봇을 실시간으로 최적화하고 수정한다. 복잡한 규칙을 만들지 않고 간단한 규칙 몇 개만 만들어서 봇을 만들면 위트닷에이아이가 기존 학습 내용을 바탕으로 챗봇을 만들어주는 것이다. 물론, 영어에 한정돼 있다.


디지털 시대 내내 항상 위기의식을 느끼고 있는 언론사들도 챗봇에 주목하고 있다. 언론사들은 챗봇이 독자 참여도 향상, 수백, 수천만 명에 이르는 메신저 이용자들을 대상으로 한 새로운 독자층 개발, 독자와 새로운 방식으로의 연결, 커뮤니티 건설 등을 가능하게 해 줄 것이라는 기대를 품고 있다(Barot & Oren, 2015, p. 19). 9 독자적인 챗봇 플랫폼을 구축한 텔레그램의 봇 스토어에는 현재 뉴스 분야 10에만 120개의 챗봇이 등록돼 있다. 2016년은 ‘뉴스의 봇화(the botification of news)’가 본격적으로 시작될 것이라는 전망이 나올 정도다(Barot, 2015). 11


페이스북 메신저 플랫폼은 아직 베타 버전으로 완전한 수준은 아니다. 페이스북이 전 세계에서 가장 많은 이용자를 보유하고 있는 SNS이기에 페이스북 메신저 플랫폼 기반의 챗봇 개발에 나서려는 언론사들은 많지만, 실제 서비스를 실시 중인 곳은 CNN 외에는 거의 없다고 할 수 있다. CNN 챗봇과 대화하기 위해서는 CNN 페이스북 페이지에 방문해서 메신저 창을 클릭하면 된다.


[사진2]는 PC 화면 12을 통해 CNN 챗봇과 대화를 나눈 장면을 갈무리한 것이다. ①번 화면을 통해 챗봇에 대해 안내한 후 설정을 유도한다. 설정이 끝나면 ②번 화면과 같이 대화 방법을 소개한 후 주요 기사(Top stories), 추천 기사(Stories for you), 문의(ASK CNN) 등을 선택할 수 있는 화면을 제시한다. 이용자는 제시된 선택 사항을 클릭하거나 자신이 원하는 내용을 입력할 수 있다. ③번 화면은 ②번 화면에서 주요 기사 선택 후 나타난 화면으로 주요 기사를 보여준 후 기사 내용 전체를 읽을 것인지 요약문을 읽을 것인지를 선택하게 한다. 요약문은 채팅 창 내에서 대화 형식으로 보여주지만, 전체 기사 읽기는 링크를 통해 다른 창에서 읽게 한다. ④번 화면은 원하는 내용이 없어서 ‘트럼프(trump)’라는 단어를 입력한 결과다. 입력된 대화 내용과 맞는 기사와 요약문을 제시한다. 트럼프의 경우는 미리 입력된 정보가 있기에 요약문을 제시하지만 정보가 없을 경우에는 가능한 관련된 기사 등을 호출해 보여준다.


예를 들어, ‘present’라는 일반명사를 입력할 경우 CNN 챗봇은 “이 내용과 관련해 당신이 가장 읽을 것 같은 기사(Based on what you asked for, here’s a story I thought you might want to read)”라고 말하며 관련된 기사의 링크를 제공한다. 하지만 단어의 의미를 이해한다기보다는 단순한 검색 수준이다. “너는 누구냐(who are you)”고 말을 하면, “당신에게 가장 도움이 될 만한 것을 추천하고 싶다. 당신을 위한 기사가 여기 있다(I hope I’ll be able to assist you as much as possible. Here’s a story for you)”며 기사를 추천한다. 문장의 의미를 이해하기보다는 단순 검색 문장으로 이해하여 답변하는 것이다. 즉, 사람과 같은 자연스러운 대화를 나누고 있지는 못하다. 물론, 충분한 대화의 양 이 쌓인 후에는 더욱 자연스러워질 것이겠지만 아직은 제한적 수준이다. 현재 수준에서 페이스북 뉴스 챗봇은 대화 형식의 뉴스 추천 서비스에 가깝다 고 할 수 있다.


이 또한 그냥 지나갈 수도…

[사진3] 조선일보(왼쪽)와 한겨레신문(오른쪽) 페이스북 페이지 대화 화면. 페이스북 페이지에서 사람 운영자가 답변한 사례들로, 운영자들이 수많은 사람들에게 일일이 대응하는 것은 사실상 불가능하기 때문에 ‘부재중’과 같은 형식적 대화만 하거나 불러도 대답이 없을 수밖에 없다.


[사진3]은 페이스북 페이지에서 챗봇이 아닌 사람으로서 운영자가 답변한 사례들이다. 굉장히 소수일 것으로 추측되는 운영자들이 수많은 사람들에게 일일이 대응하는 것은 사실상 불가능하다. ‘부재중’ 과 같은 형식적 대화만 하거나 불러도 대답이 없을 수밖에 없다. CNN의 경우도 챗봇을 개발하기 전에는 평균 답변 기간이 하루 정도였다. 제한적이지만, 챗봇이 훨씬 나은 이유다. 하지만 향후 뉴스 분야에서 챗봇이 얼마나 혁신적 모델로 자리잡을지를 전망한다는 것은 현 시점에서 사실은 불가능하다. 인공지능 기술은 분명히 발전해 나갈 것이지만, 당장 1~2년 내에 챗봇이 뉴스 시장을 장악한다는 식의 전망은 아직 섣부르다. ‘이 또한 지나간’ 사례들을 그동안 충분히 봐 왔기 때문이다.


‘챗봇 저널리즘’ 13이라는 말까지 등장하고 있지만, 그 진화의 방향이 어떻게 될지는 아무도 확신할 수 없다. 구글 글래스가 등장했을 당시 유행했던 ‘글래스 저널리즘’이라는 말은 더 이상 사용되지 않고 있다. 이용자 개인의 맥락을 분석한 맞춤형 광고로 새로운 수익원을 창출할 것이라는 전망도 있지만 그것이 언론사가 아닌 플랫폼의 수익원으로만 돌아간 사례들도 우리는 꾸준히 봐 왔다. 게다가 챗봇의 핵심은 인공지능이지만 언론사가 독자적으로 인공지능 기술을 갖춘다는 것은 말처럼 쉬운 일이 아니다. ‘이 또한 지 나갈지 모를’ 새로운 기술을 무조건 따라갈 것이 아니라 미디어의 관점에서 기술의 방향을 비판적으로 지켜보는 것도 방법일 수 있다. 마이크로소프트가 사람과 대화를 나누는 인공지능 챗봇 ‘테이(Tay)’를 선보였다가 16시간 만에 운영을 중단한 사례 14는 많은 점을 시사한다.



.

반응형
반응형


네이버·라인, 인공지능 플랫폼 ‘클로바’ 공개  http://www.bloter.net/archives/273017


Clova clova.ai 공식 통합형 인공지능 플랫폼 Clova

 

네이버와 라인이 인공지능 플랫폼 확장을 위해 힘을 합친다. 이데자와 다케시 라인주식회사 대표는 3월1일(현지시간) 열린 ‘모바일 월드 콩그레스(MWC) 2017’ 기조연설에서 양사 합작 인공지능 플랫폼 ‘클로바’를 공개했다. 클로바(Clova)는 ‘CLOud Virtual Assistant’의 약자로, 음성인식 기반의 클라우드 플랫폼을 의미한다.


클로바는 ‘프로젝트J’에서 내놓은 서비스다. 프로젝트J는 네이버랩스와 라인의 인공지능 연구소가 공동 연구개발을 하기 위해 꾸려졌다. 이번에 공개한 클로바는 프로젝트J가 네이버 음성인식 인공지능 플랫폼 ‘아미카’의 업그레이드 버전으로 내놓은 것이다. 네이버는 지난 1월26일 진행된 2016년 4분기 컨퍼런스콜에서 “프로젝트J의 기본적인 구상과 개발 방향은 24시간 언제나 사용자와 함께하는 인공지능 가상비서 서비스를 만드는 것이 목표”라고 밝힌 바 있다.


네이버 관계자는 “앞으로 클로바를 양사 단일 서비스 형태로 진행할 예정”이라고 말했다. 서비스 총괄 역시 프로젝트J를 총괄한 신중호 라인CGO(글로벌경영총괄)가 이어간다. 이번 합작은 양사 인공지능 기술력을 바탕으로 아시아 글로벌 시장 진출을 염두한 것으로 보인다.


클로바는 인간의 오감을 활용한 인공지능 플랫폼을 목표로 하고 있다. 인간이 오감을 활용하는 것처럼, 인공지능도 결국 인간의 오감을 활용하는 방향으로 나아갈 것이라는 인식에 기반했다. 기존 아미카가 주로 음성인식 서비스를 했던 것에서 나아가 다양한 감각을 인지하는 것으로 확장해 나갈 방침이다.


클로바는 ▲인간의 오감에 해당하는 ‘클로바 인터페이스’▲인간 두뇌에 해당하는 ‘클로바 브레인’▲기기와 애플리케이션을 연결하는 ‘클로바 인터페이스 커넥트’▲콘텐츠·서비스 연결로 ‘클로바 브레인’의 기능을 확장하기 위한 ‘클로바 익스텐션 키트’ 등으로 구성된다.


클로바 브레인은 인공신경망 기계번역(NMT)와 자연어처리 등 다양한 기술을 기반으로 한다. 기존 아미카가 음성 언어 이해, 대화관리, 응답 생성의 단계로 기술을 구사했다면, 클로바 브레인은 클로바 인터페이스로 인지된 상황을 자동 분석하고 이에 맞는 결과를 제시하는 방식으로 발전했다.


네이버와 라인은 올 여름 클로바가 탑재된 자체 스마트폰 앱 출시를 시작으로 AI 스피커 ‘웨이브’ 등 다양한 기기와 서비스들을 발표할 예정이다. 소니, 다카라 토미, 윈클 등 각 분야별 전문기업과 파트너십도 염두에 두고 있지만, 아직 구체적인 협의 사항은 없으며 앞으로 논의를 이어갈 예정이라고 말했다.


네이버 관계자는 <블로터>와 통화에서 “오늘 발표는 기존에 연구하던 AI플랫폼의 업그레이드 버전인 클로바의 명칭을 공개하고, 앞으로의 발전 방향성을 얘기하기 위함”이라며 “자세한 서비스에 대해서는 추후 공개할 예정”이라고 말했다.



반응형
반응형

'AI시대 주역' 챗봇, 기업 업무환경 확 바꾼다


원문보기: 

http://www.zdnet.co.kr/news/news_view.asp?artice_id=20170227172658#csidx5fc55cb6fb84480a055042132cc5a53 


자동화된 채팅창이 고객응대 뿐 아니라 기업 내부 업무효율성 향상 수단으로 주목받고 있다. 이제는 기업용 챗봇 시장이 무르익었기 때문이다.

시장조사업체 가트너는 '4가지 기업 챗봇 활용 사례(Four Use Cases for Chatbots in the Enterprise Now)'라는 보고서를 통해 챗봇이 기업 업무 환경을 어떻게 바꿔나갈지에 대한 미래상을 그렸다.

보고서에 따르면 2019년에는 전 세계에서 약 40%에 달하는 기업들이 자연어 기반 상호작용을 활용해 여러 비즈니스 분야에 챗봇을 본격적으로 도입하게 될 것으로 전망된다.

기업 시장에서 활용되는 챗봇은 우리가 흔히 아는 애플 시리, 구글 어시스턴트, 마이크로소프트 코타나와는 이정표를 달리한다. 개인화된 서비스를 제공한다기보다는 기업들의 단순반복 업무를 지원하면서 고객에 대응하는 방식을 바꾸는 패러다임 변화를 예고한 때문이다.


■ 기업용 챗봇 어떻게 쓰이나

국내서는 카카오뱅크, K뱅크 등에서도 주목하고 있는 콜센터 헬프데스크 업무 중 단순반복업무를 대체할 수 있게 되는 것은 이미 예상 가능한 시나리오다. 기업 내부에서는 기존 애플리케이션과 연동해 결재요청을 승인/거절/지연하는 용도로도 챗봇을 활용할 수 있을 것으로 예상된다. 더 아나가서는 사물인터넷(IoT)과 연동한 재고관리와 함께 인공지능(AI)을 탑재한 챗봇들끼리 정보를 주고 받으면서 사용자의 개인 스케쥴을 관리하는 용도로까지 쓰이게 될 것으로 기대된다.

보고서에 따르면 챗봇이 기업들에게 의미를 가지는 이유는 임직원들 간 혹은 임직원들과 고객 간에 커뮤니케이션을 가장 손쉽게 효율적으로 할 수 있기 때문이다. 글로벌 기업들은 이미 자사 애플리케이션 개발팀을 통해 외부에서 제공하는 챗봇 제작툴인 봇 프레임워크를 활용하는 방법으로 손쉽게 챗봇을 업무용 앱과 연동시키는 작업에 나섰다.

챗봇의 성장을 이끌고 있는 것은 단순히 명령을 내리는 것이 아니라 사람과 대화하는 수준에서 말뜻을 알아듣게 하기 위해 개발된 자연어 처리(NLP), 자연어 이해(NLU) 기술이 등장한 덕이다. 인공지능(AI)의 기반 기술인 머신러닝을 활용해 사용자가 무슨 말을 하고 있는지를 기계가 알아들을 수 있도록 이해한 뒤에 이를 처리하는 기술이 그것이다.


이전까지 챗봇은 의사결정나무(decision trees)를 활용해 사전에 입력된 명령어를 대화창에 입력하는 경우에만 반응했지만 지금은 이런 단계를 넘어서 문장을 이해하고, 거기서 사용자 의도를 간파하는 수준으로까지 기술력이 올라갔다.

이를 테면 업무용 문서관리앱 '박스(BoX)'를 사용하는 과정을 생각해보면 된다. 박스와 연동된 챗봇에게 "박스에서 프로젝트C에 대한 파일들을 찾아서 워드로 열어줘(Find my files on Box for Project C and open them in Word)"라고 기업용 챗봇에 입력하면 그대로 찾아준다. 챗봇은 이러한 지시를 수행한다.

이러한 일을 기업 임직원이 하려면 박스에 로그인한 뒤 마이크로소프트워드를 실행하고, 프로젝트C라는 이름을 기억해 관련 파일이 담긴 폴더를 열어 이름을 확인한 뒤 여는 과정을 반복해야 한다. 챗봇을 쓸 경우 일상적인 반복업무 중 5단계 과정을 줄일 수 있게 되는 셈이다.

이 뿐만 아니다. 자동화된 챗봇은 특정 기업용 앱이나 푸시알람을 임직원들에게 전달할 수 있다. 이를 테면 고객이 제품을 주문할 경우 이러한 내역을 판매부서에 알리고, 해당 부서 담당자가 필요한 업무용 앱을 자동으로 불러내 여러 업무를 처리하게 할 수 있다.

이밖에도 기업 내외부에 감사 이메일을 보내거나 내부 직원 교육, 제품설치, 제품 관련 정보 전달 등에 대해서도 챗봇이 쓰일 수 있다.

보다 깊이 있게 들어가면 기업 내 개발팀이 챗봇을 통해 소프트웨어를 자동 배포하거나 모니터링, 장애처리 등 기능을 수행하는 '챗옵스(chatops)'도 기업용 챗봇으로 주목받고 있다. 업무와 연결된 임직원, 개발툴, 챗봇이 채팅을 기반으로 이러한 업무 중 자동화할 수 있는 부분은 대부분 챗봇을 통해 처리하는 방식이다. 의사결정권자는 여기서 승인(approve), 거절(deny), 연기(defer) 중 하나만 답하면 된다.(☞챗옵스 관련 칼럼)

IoT와 연동된 재고관리도 기업용 챗봇이 나갈 방향 중 하나다. 물류창고 직원들에게 상품이 바닥났을 때 혹은 해당 상품이 하역장에 도착했을 때 알려주는 역할을 챗봇이 대신할 수 있다. 이와 연동된 IoT기기가 알람을 주는 것이다.

궁극적으로는 챗봇이 자연어 처리, 이해를 넘어 다른 AI 기술과 만나 다른 챗봇과 대화를 나누며 업무 파트너들끼리 스케쥴을 자동으로 조정하는 등 기능까지 수행하게 될 것으로 전망된다.





.


반응형
반응형

‘인간 vs 인공지능’, 누구를 위한 대결이죠?


http://www.bloter.net/archives/272574


2월21일 ‘제2의 세기의 대결’이라는 타이틀을 걸고 열린 행사가 있습니다. 국제통역번역협회 (IITA)와 세종대학교, 세종사이버대학교가 공동 주최한  ‘인간 vs 인공지능(AI) 번역대결’ 행사입니다. ‘알파고’에 이어 인간과 AI의 두 번째 대결이라는 주최 측의 홍보가 더해지면서 대회는 뜨거운 화제로 떠올랐습니다.

주최측이 내린 결과는 인간의 승리. 기다렸다는 듯이 ‘인간의 압승이었다’라는 기사가 쏟아졌습니다. 동시에 알파고와의 바둑 대결에서 진 인간이 ‘정신 승리’한 것 아니냐는 비판이 쏟아졌습니다. 대결 방식을 두고 공정하지 않다는 논란이 이어졌습니다.


▲행사 메인 포스터, 세종대학교 제공

이 대결은 현업에 종사하고 있는 전문 번역사 4명과 구글 번역기, 네이버 번역기 ‘파파고’, 시스트란 번역기 등 총 번역기 3가지가 제한된 시간 안에 영어와 한국어 지문을 번역하는 방식으로 이뤄졌습니다. 번역기는 10분 동안, 인간은 50분 동안 문제를 번역했습니다.

대결 직후 번역 평가 점수가 공개된 부분에 대해서도 평가 기준이 사람에게 맞춰져 있다는 비판도 있었습니다. 번역기 순위에 대한 추측성 보도가 쏟아졌습니다.


이런 기사 분위기에 행사를 연 주최측도 이해는 하지만 다소 억울하다는 반응을 보였습니다. 번역 분야에서 AI가 얼마나 인간의 능력에 가까워졌는지 비교해보자는 취지에서 행사를 진행했는데, 여론과 언론보도가 부정적으로 나오자 당혹스럽다는 입장입니다.

급기야 국제통번역협회와 세종대 측은 책임을 서로 미루기 시작했습니다. 먼저 선을 그은 건 국제통번역협회입니다. 강대영 국제통번역협회 국장은 <블로터>와 전화통화에서 “주최는 우리(협회)가 한 것이 맞지만, 공정성 문제 때문에 출제 및 평가는 심사 위원에게 일임했으며, 우리는 진행만 했다”라고 밝혔습니다.

“불공정성 논란이 나오는 건 엄연한 사실입니다. 인간은 기계처럼 빨리 번역할 수 없습니다. 기계와 인간을 일대일로 대입한다면 본질에서 불합리합니다. 공정한 조건은 제한 시간을 동일하게 해야 하는데, 그게 불가능하니 한계라고 잡고 갔습니다. 시간을 좀 더 주는 것으로.”

인간과 번역기의 대결은 분야 특성상 완벽히 공정한 여건을 만들기는 어렵습니다. 번역엔 명확한 정답이 없기 때문입니다. 협회 측 역시 출제된 문제 중 인간 번역사한테 일방적으로 유리한 것도 있었다며 대회를 둘러싼 불공정성 논란을 인정했습니다.

김대종 세종대학교 홍보실장 역시 이번 행사에 대해 진행만 했을 뿐이라고 얘기합니다. 문제 제출과 평가를 세종대에서 맡긴 했지만, 그런 부분은 모두 곽중철 한국외대 통번역대학원 교수가 했다고 답했습니다.

“곽중철 교수가 한국 번역업계에서 누구도 토 달 수 없을 만큼 최고이기 때문에 그분에게 모든 걸 맡겼습니다. 행사 진행도 구글에는 연락했는데 답이 없었고, 네이버는 협회 측에서 연락한 것으로 알았으며, 시스트란은 행사 소식 듣고 먼저 연락이 왔습니다.”

국제통번역협회와 세종대학교 측 모두 행사는 주최했지만, 자세한 행사 내용이나 진행 과정에 대해서는 모른다고 입을 모았습니다. 주최한 곳은 있는데, 정말 주최했다고 얘기하는 곳은 없는 셈이지요.

행사를 두고 참여 업체로 거론된 구글, 네이버, 시스트란도 불만이 많습니다. 구글과 네이버는 행사에 자신들이 ‘참여’했다는 주최측 말에 황당하다는 반응을, 참여 의사를 밝힌 시스트란 역시 행사 진행에 대해 불만을 토로했습니다.


...


주최측과 여러 업체, 관계자의 말처럼 인간과 기계의 역할을 따로 분리할 것이 아니라 인간이 기술을 어떻게 활용할 수 있을지에 초점을 맞췄다면 어땠을까요. 소문난 잔치에 먹을 게 있는 행사가 됐을 지 모릅니다.

집단지성을 이용한 번역 서비스를 운영하는 이정수 플리토 대표는 이번 대회를 두고 ‘인간과 기계의 공존’을 생각해 봐야 한다는 의견을 내놓았습니다.

“이번 대회의 공정성과 인간과 기계의 장단점을 따지는 것은 아무 의미가 없습니다. 기계 번역이 아무리 발전하더라도 시대마다 달라지는 문화적 의미와 뉘앙스를 읽어내는 건 인간의 영역이죠. 동시에 기계번역이 인간에게 가져올 편리함은 분명히 존재한다는 점을 인정합니다. 결국, AI는 사람의 번역 데이터를 기반으로 발전하고, 기계의 도움으로 통번역가들은 서비스의 편의를 얻을 수 있으므로 둘의 공존이 불가피하죠.”

지난해 인간과 퀴즈대결을 벌인 국산 AI ‘엑소브레인’ 개발을 담당한 ETRI 박상규 박사는 번역기에 대해 다음과 같은 의견을 전했습니다.


“AI 번역이 아직 사람을 대체할 수준은 아니지만, 장점은 있어요. 인간처럼 정확하게는 못해도 빠른 시일 내에 많은 문장을 번역할 수 있다는 점, 여러 사람에게 동시에 서비스할 수 있다는 점입니다.”


인간과 AI가 서로 경쟁이 아닌, 상생할 수 있는 부분이 있습니다. 대결 결과처럼 기계의 빠르기와 생산성을 활용하면서 자동번역기가 번역하기 어려운 부분을 통번역사가 편집하면 훨씬 생산성 높은 번역 작업이 이뤄질 수 있을 것입니다. 


아마 곧 따라잡을수 없게 될 것이다. 기계는 잠을 자지 않고 배우고 있으니까. 


.

반응형
반응형
네이버 뉴스, 인공지능이 추천한다.


네이버 뉴스편집에서 인간의 개입이 줄어든다. 네이버는 지난 2월17일 모바일 메인 ‘뉴스판’에서 에어스(AiRS, AI Recommender System, 이하 ‘에어스’)를 통한 뉴스 추천 베타테스트를 사작한다고 밝혔다. 에어스는 네이버가 자체 연구, 개발한 인공지능 기반 추천 시스템이다.

AirS (1)
사진=네이버

에어스 추천 뉴스 베타판은 무작위로 선정된 일부 사용자를 대상으로 제공된다. 네이버 다이어리에서도 만나볼 수 있다. 에어스는 공기(air)와 같이 항상 이용자 곁에서 유용한 콘텐츠를 추천한다는 의미로 명명된 인공지능 기반 추천 시스템이다. 네이버는 이 같은 시스템을 2016년 MY피드, 네이버 TV 일부에 적용, 이용자들의 콘텐츠 소비패턴과 시간의 경과에 따라 변하는 개인별 관심사를 분석하며 이에 따른 콘텐츠를 자동으로 추천하고 있다.

네이버는 모바일 메인 ‘뉴스판’ 중단 배너 영역 아래, ‘AiRS 추천 뉴스 영역(베타버전)’을 마련하고, 최근 7일 간 ▲사용자가 네이버 모바일과 PC에서 구독한 뉴스 및 ▲사용자와 관심사가 비슷한 그룹이 구독한 뉴스를 기반으로, NPMI(추천 스코어)Normalized Point-wise Mutual Information, Item-to-item 모델에서 item(콘텐츠)간 유사도 계산 시에 사용되는 통계값이다.  co-occurrence(동시 발생)만을 고려한 모델에 비해 item간 조건부 확률까지 분석해, 보다 정교한 추천이 가능한 방식이다close, 최신성, 다양성 등을 추출 및 분석해 개인별 관심도, 선호도가 높은 뉴스를 추천한다. 해당 영역에서는 사용자의 관심사에 따른 뉴스를 추천하며, 소비에 따라 실시간으로 새로운 뉴스를 업데이트하며 다양한 뉴스를 제공한다.

네이버의 뉴스판은 워낙 많은 사람이 이용하다 보니 편집과 관련해 정치·사회적으로 민감하다. 비교적 논란이 적을 수 있는 ‘연예’, ‘스포츠’보다 뉴스판에 먼저 에어스를 적용한 이유는 베타 테스트의 관점에서 테스트 사용자의 규모와 추천 대상 콘텐츠의 생산량(회전율)을 고려했기 때문이다. 향후 에어스는 네이버 모바일 주제판인 ‘연예’, ‘스포츠’ 등 더욱 다양한 주제판과 ‘웹툰’과 같은 네이버의 콘텐츠 서비스로 확대해, 사용자들의 세분화, 개인화된 관심사와 니즈에 적합한 맞춤 콘텐츠를 추천해나갈 예정이다.

비슷한 관심사의 사람들이 본 뉴스를 추천한다

에어스는 같은 관심사를 가진 사용자 그룹이 구독한 콘텐츠를 추천하는 CF(Collaborative Filtering, 협력 필터) 기술을 바탕으로 한다. CF기술은 컴퓨터가 보편화하던 1970년대부터 시작됐다. 정보의 양이 빠른 속도로 증가하면서 그에 걸맞은 정보 추천 시스템이 필요해져서다.

CF 기술은 네이버의 ‘콘텐츠 네트워크’에 적용, 비슷한 관심사를 가진 사용자 네트워크를 구축하고, 해당 구성원들이 많이 본 콘텐츠 중 관련도가 높은 콘텐츠를 우선 추천한다. CF기술은 넷플릭스의 영화 및 드라마 추천, 아마존의 쇼핑 상품 추천, 유튜브의 동영상 추천 등 글로벌 IT기업들도 활용하고 있다.

AirS (2)
사진=네이버

네이버는 인공신경망 기술인 순환신경망(RNN, Recurrent Neural Network)을 통해 콘텐츠를 추천하기 위한 내부 연구도 진행 중이라고 알렸다. 해당 기술은 사용자가 콘텐츠를 구독한 순서까지 기억한다. 시간이 지날수록 더욱 정교하게 콘텐츠를 분석하고, 생성된 지 얼마 되지 않은 최신 콘텐츠까지 추천할 수 있는 기술이다. 스스로 학습이 가능한 추천 시스템이다.

AirS (3)
사진=네이버

최재호 에어스 리더는 “에어스는 계속해서 학습을 통해 고도화되기 때문에 추천 품질은 지속적으로 좋아지게 된다”라며 “앞으로 CF 기술과 RNN 등 딥러닝 기술이 가진 장점을 융합해 더욱 고도화된 형태의 추천 시스템으로 진화하기 위한 연구를 지속할 예정”이라고 밝혔다.

편리한 기술, 부작용은 없을까?

콘텐츠 추천 시스템은 편리하다. 사람이 할 일이 줄어든다는 것은 부차적이다. 개인화된 맞춤 추천도 사용자 입장에서 편리하게 받아들여질 수 있는 기술이다. 대중의 취향보다는 같은 관심사를 공유하는 사람들의 취향이 사용자의 입맛에도 맞다. 알고리즘이 추천하는 시스템을 적용하면 ‘포털이 사실상의 뉴스편집권을 행사한다’는 논란을 비껴가기에도 좋다. ‘로봇이 사용자의 관심사를 기반으로’ 추천한다는 사실은 굉장히 공정해 보이기 때문이다.

‘다음’을 운영하고 있는 카카오는 2015년부터 ‘루빅스’라는 이름의 알고리즘 기반 추천 시스템을 뉴스 콘텐츠 제공에 사용하고 있다. 카카오 측은 “루빅스 적용 후 사용자에 따라 다른 뉴스가 노출되므로 메인에 노출되는 뉴스 수가 늘어난다”라며 “사용자의 입맛에 맞는 콘텐츠를 노출하게 되므로 뉴스 콘텐츠 소비량도 증가하는 효과를 얻을 수 있다”라고 장점을 강조한다.

▲필터버블은 개인 맞춤형 정보를 제공하는 과정에서 생겨난다.
▲필터버블은 개인 맞춤형 정보를 제공하는 과정에서 생겨난다. 

다만 비슷한 그룹의 관심사에 기반해 추천하는 기술은 ‘필터버블’의 우려에서 벗어나지 못한다. 필터버블은 인터넷 정보제공자가 이용자 맞춤형 정보를 제공해 필터링 된 정보만 이용자에게 도달하는 현상을 지칭한다. 개인 맞춤형 콘텐츠 추천 시스템의 부작용이다.

개인 맞춤형 콘텐츠 추천 시스템에 뉴스가 섞이면 부작용이 생긴다. 자기가 좋아하는 뉴스, 보고 싶은 뉴스만 보면 결국 정치·사회적인 문제에서 고정관념과 편견을 강화하는 계기가 된다. 강화된 고정관념과 편견은 좀 더 입맛에 맞는 게시물만 가지고 온다. 악영향이 강화되는 셈이다. 이렇게 되면 여론을 잘못 이해하게 될 뿐만 아니라, 전혀 잘못된 소식이 확산력을 가지게 되는 상황도 생긴다. 이러한 필터버블은 개인의 편견이나 고정관념을 강화하는 데 그치지 않고 사회와 정치에도 악영향을 미칠 수 있다.

네이버는 이러한 우려에 대해 “이용자 행태를 분석하는 과정에서 일괄적으로 필터링하거나 어느 한쪽으로 쏠리기보다는, 개개인의 시시각각 변하는 관심사를 인식하여 최적화된 추천 결과를 예측하는 데 중점을 두고 있다”라며, “뉴스판의 경우만 보더라도 npmi(추천 스코어) 이외에 다양성이나 최신성 등이 충분히 고려되며, ‘추천 뉴스 새로 보기’를 통해 여러 분야의 다양한 기사들도 계속 접할 수 있다”라고 답변했다.

시스템과 로직은 공개할 의향 있어

보통 알고리즘은 기업 비밀로 취급되곤 한다. 하지만 뉴스편집은 약간 예외가 될 수 있다. ‘왜 해당 뉴스가 비중있게 다뤄지는지’, ‘더 긴 노출 시간을 확보하는지’는 기업의 문제이면서 동시에 사회의 문제다. 이와 관련된 알고리즘이 투명하게 알려지는게 중요한 이유다. 카카오는 작년 말에 “루빅스가 어떤 팩터로 구성됐고, 어떻게 작동하는지에 대한 공개를 준비하고 있다”라고 밝힌 바 있다. 네이버 측도 “아직 연구 실험 중인 부분이 있어 향후 바뀔 수는 있지만”이라고 전제는 달았지만 “기본적인 시스템이나 로직은 기회가 된다면 공개할 예정이다”라고 답변했다.

유봉석 네이버 미디어서포트 리더는 “에어스를 통해, 사용자들이 네이버 모바일 홈에서 다양한 영역에 걸쳐있는 개인 관심사에 대한 뉴스를 더욱 편리하게 확인할 수 있게 될 것으로 기대한다”라며, “기술을 기반으로 투명한 뉴스 서비스를 제공하기 위한 노력을 이어갈 것이다” 라고 말했다.






.


반응형
반응형

유다시티, 자율주행차 시뮬레이터 오픈소스로 공개


http://www.bloter.net/archives/271788


온라인 교육 업체 유다시티가 자율주행차 시뮬레이터를 오픈소스 기술로 공개했다고 2월8일 밝혔다.


이번에 공개한 시뮬레이터는 유다시티 온라인 강의 ‘자율 주행차 엔지니어링 과정’의 일부 수업 자료다. 자율 주행차 엔지니어링 과정은 유다시티 뿐만 아니라 BMW, 우버, 디디추싱, 메르세데스 벤츠, 엔비디아 등이 함께 협력해 만든 강의로 딥러닝, 컨트롤러, 컴퓨터 비전, 자동차 하드웨어 등을 가르친다. 강의는 유다시티 설립자이자 과거 구글에서 자율주행차 개발을 이끈 세바스찬 스런이 직접 진행하기도 하다. 유다시티는 이 강의를 위해 오픈소스 자율자동차 소프트웨어를 개발하고 있으며, 이와 관련된 소스코드를 깃허브에 전부 공개했다. 여기에는 주행 기록 데이터, 딥러닝 모델, 카메라 마운트 기술 등이 포함돼 있다.



A self-driving car simulator built with Unity 


Welcome to Udacity's Self-Driving Car Simulator

This simulator was built for Udacity's Self-Driving Car Nanodegree, to teach students how to train cars how to navigate road courses using deep learning. See more project details here.

All the assets in this repository require Unity. Please follow the instructions below for the full setup.

Avaliable Game Builds (Precompiled builds of the simulator)

Instructions: Download the zip file, extract it and run the exectution file.

Version 2, 2/07/17

Linux Mac Windows

Version 1, 12/09/16

Linux Mac Windows 32 Windows 64

Unity Simulator User Instructions

  1. Clone the repository to your local directory, please make sure to use Git LFS to properly pull over large texture and model assets.

  2. Install the free game making engine Unity, if you dont already have it. Unity is necessary to load all the assets.

  3. Load Unity, Pick load exiting project and choice the self-driving-car-sim folder.

  4. Load up scenes by going to Project tab in the bottom left, and navigating to the folder Assets/1_SelfDrivingCar/Scenes. To load up one of the scenes, for example the Lake Track, double click the file LakeTrackTraining.unity. Once the scene is loaded up you can fly around it in the scene viewing window by holding mouse right click to turn, and mouse scroll to zoom.

  5. Play a scene. Jump into game mode anytime by simply clicking the top play button arrow right above the viewing window.

  6. View Scripts. Scripts are what make all the different mechanics of the simulator work and they are located in two different directories, the first is Assets/1_SelfDrivingCar/Scripts which mostly relate to the UI and socket connections. The second directory for scripts is Assets/Standard Assets/Vehicle/Car/Scripts and they control all the different interactions with the car.

  7. Building a new track. You can easily build a new track by using the prebuilt road prefabs located in Assets/RoadKit/Prefabs click and drag the road prefab pieces onto the editor, you can snap road pieces together easily by using vertex snapping by holding down "v" and dragging a road piece close to another piece.


Self-Driving Car Simulator





.


반응형

+ Recent posts