반응형
반응형

https://ipython.org/install.html

Installing IPython

There are multiple ways of installing IPython. This page contains simplified installation instructions that should work for most users. Our official documentation contains more detailed instructions for manual installation targeted at advanced users and developers.

If you are looking for installation documentation for the notebook and/or qtconsole, those are now part of Jupyter.

I already have Python

If you already have Python installed and are familiar with installing packages, you can get IPython with pip:

pip install ipython

I am getting started with Python

For new users who want to install a full Python environment for scientific computing and data science, we suggest installing the Anaconda or Canopy Python distributions, which provide Python, IPython and all of its dependences as well as a complete set of open source packages for scientific computing and data science.

  1. Download and install Continuum’s Anaconda or the free edition of Enthought’s Canopy.
  2. Update IPython to the current version using the Terminal:

Anaconda:

conda update conda
conda update ipython

https://pypi.org/project/ipython/

 

ipython

IPython: Productive Interactive Computing

pypi.org

 pip install sympy

https://pypi.org/project/sympy/

 

sympy

Computer algebra system (CAS) in Python

pypi.org

 

반응형
반응형

2차 방정식은 2차 다항식 방정식으로, 일반적인 형태는 다음과 같습니다:

Python으로 2차 방정식 풀기

아래는 Python을 사용하여 2차 방정식의 해를 구하는 예제 코드입니다:

import cmath  # 복소수 계산을 위해 cmath 모듈 사용

def solve_quadratic(a, b, c):
    # 판별식 계산
    discriminant = b**2 - 4*a*c
    
    # 근의 공식 사용
    root1 = (-b + cmath.sqrt(discriminant)) / (2 * a)
    root2 = (-b - cmath.sqrt(discriminant)) / (2 * a)
    
    return root1, root2

# 예시: a, b, c 값 입력
a = 1  # x^2의 계수
b = -3  # x의 계수
c = 2  # 상수항

# 함수 호출하여 근 구하기
roots = solve_quadratic(a, b, c)

# 결과 출력
print(f"방정식의 근: {roots[0]} 과 {roots[1]}")

반응형
반응형

[python] html table을 Markdown으로 변경하기. 

 

htmltabletomdhtml 테이블을 마크다운으로 변환하기 위한 것입니다. 또한, 테이블 셀 내부의 내용은 HTML이 포함되어 있는 경우 마크다운으로 변환할 수 있으며, 이를 위해 라이브러리를 사용합니다 htmltomarkdown.

 

pip install htmltabletomd

 

https://pypi.org/project/htmltabletomd/

 

htmltabletomd

Convert html table to markdown table

pypi.org

from bs4 import BeautifulSoup
from markdownify import markdownify as md
import os

def convert_html_table_to_md(html_file_path, output_md_file_path):
    # HTML 파일 읽기
    with open(html_file_path, 'r', encoding='utf-8') as file:
        html_content = file.read()

    # BeautifulSoup을 사용하여 HTML 파싱
    soup = BeautifulSoup(html_content, 'html.parser')

    # HTML을 Markdown으로 변환
    markdown_content = md(str(soup))

    # 결과를 Markdown 파일로 저장
    with open(output_md_file_path, 'w', encoding='utf-8') as file:
        file.write(markdown_content)
    
    print(f"Converted HTML table to Markdown and saved as: {output_md_file_path}")

# 사용 예시
#html_file_path = 'path_to_your_html_file.html'  # 변환할 HTML 파일 경로
html_file_path = 'test_001.html'  # 변환할 HTML 파일 경로
output_md_file_path = 'output_markdown_file.md'  # 저장할 Markdown 파일 경로

convert_html_table_to_md(html_file_path, output_md_file_path)
반응형
반응형

Ibis는 모든 쿼리 엔진에서 실행되는 Python 데이터프레임 API를 정의합니다. 현재 20개 이상의 백엔드가 있는 모든 백엔드 데이터 플랫폼의 프런트엔드입니다. 이를 통해 Ibis는 연결된 백엔드만큼 뛰어난 성능을 일관된 사용자 경험과 함께 제공할 수 있습니다.

 

https://ibis-project.org/why

 

Why Ibis? – Ibis

the portable Python dataframe library

ibis-project.org

 

 

 

 

Why Ibis?

Ibis defines a Python dataframe API that executes on any query engine – the frontend for any backend data platform, with 20+ backends today. This allows Ibis to have excellent performance – as good as the backend it is connected to – with a consistent user experience.

What is Ibis?

Ibis is the portable Python dataframe library.

We can demonstrate this with a simple example on a few local query engines:

import ibis

ibis.options.interactive = True
  • DuckDB
  • Polars
  • DataFusion
  • PySpark
1con = ibis.connect("duckdb://")

t = con.read_parquet("penguins.parquet")
t.limit(3)
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ species ┃ island    ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex    ┃ year  ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ string  │ string    │ float64        │ float64       │ int64             │ int64       │ string │ int64 │
├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤
│ Adelie  │ Torgersen │           39.1 │          18.7 │               181 │        3750 │ male   │  2007 │
│ Adelie  │ Torgersen │           39.5 │          17.4 │               186 │        3800 │ female │  2007 │
│ Adelie  │ Torgersen │           40.3 │          18.0 │               195 │        3250 │ female │  2007 │
└─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
t.group_by(["species", "island"]).agg(count=t.count()).order_by("count")
┏━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━┓
┃ species   ┃ island    ┃ count ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━┩
│ string    │ string    │ int64 │
├───────────┼───────────┼───────┤
│ Adelie    │ Biscoe    │    44 │
│ Adelie    │ Torgersen │    52 │
│ Adelie    │ Dream     │    56 │
│ Chinstrap │ Dream     │    68 │
│ Gentoo    │ Biscoe    │   124 │
└───────────┴───────────┴───────┘

Who is Ibis for?

Ibis is for data engineers, data analysts, and data scientists (or any title that needs to work with data!) to use directly with their data platform(s) of choice. It also has benefits for data platforms, organizations, and library developers.

Ibis for practitioners

You can use Ibis at any stage of your data workflow, no matter your role.

Data engineers can use Ibis to:

  • write and maintain complex ETL/ELT jobs
  • replace fragile SQL string pipelines with a robust Python API
  • replace PySpark with a more Pythonic API that supports Spark and many other backends

Data analysts can use Ibis to:

  • use Ibis interactive mode for rapid exploration
  • perform rapid exploratory data analysis using interactive mode
  • create end-to-end analytics workflows
  • work in a general-purpose, yet easy to learn, programming language without the need for formatting SQL strings

Data scientists can use Ibis to:

  • extract a sample of data for local iteration with a fast local backend
  • prototype with the same API that will be used in production
  • preprocess and feature engineer data before training a machine learning model

Ibis for data platforms

Data platforms can use Ibis to quickly bring a fully-featured Python dataframe library with minimal effort to their platform. In addition to a great Python dataframe experience for their users, they also get integrations into the broader Python and ML ecosystem.

Often, data platforms evolve to support Python in some sequence like:

  1. Develop a fast query engine with a SQL frontend
  2. Gain popularity and need to support Python for data science and ML use cases
  3. Develop a bespoke pandas or PySpark-like dataframe library and ML integrations

This third step is where Ibis comes in. Instead of spending a lot of time and money developing a bespoke Python dataframe library, you can create an Ibis backend for your data platform in as little as four hours for an experienced Ibis developer or, more typically, on the order of one or two months for a new contributor.

 
Why not the pandas or PySpark APIs?
 

Ibis for organizations

Organizations can use Ibis to standardize the interface for SQL and Python data practitioners. It also allows organizations to:

  • transfer data between systems
  • transform, analyze, and prepare data where it lives
  • benchmark your workload(s) across data systems using the same code
  • mix SQL and Python code seamlessly, with all the benefits of a general-purpose programming language, type checking, and expression validation

Ibis for library developers

Python developers creating libraries can use Ibis to:

  • instantly support 20+ data backends
  • instantly support pandas, PyArrow, and Polars objects
  • read and write from all common file formats (depending on the backend)
  • trace column-level lineage through Ibis expressions
  • compile Ibis expressions to SQL or Substrait
  • perform cross-dialect SQL transpilation (powered by SQLGlot)

How does Ibis work?

Most Python dataframes are tightly coupled to their execution engine. And many databases only support SQL, with no Python API. Ibis solves this problem by providing a common API for data manipulation in Python, and compiling that API into the backend’s native language. This means you can learn a single API and use it across any supported backend (execution engine).

Ibis broadly supports two types of backend:

  1. SQL-generating backends
  2. DataFrame-generating backends
 
 
 
 

As you can see, most backends generate SQL. Ibis uses SQLGlot to transform Ibis expressions into SQL strings. You can also use the .sql() methods to mix in SQL strings, compiling them to Ibis expressions.

While portability with Ibis isn’t perfect, commonalities across backends and SQL dialects combined with years of engineering effort produce a full-featured and robust framework for data manipulation in Python.

In the long-term, we aim for a standard query plan Intermediate Representation (IR) like Substrait to simplify this further.

Python + SQL: better together

For most backends, Ibis works by compiling Python expressions into SQL:

g = t.group_by(["species", "island"]).agg(count=t.count()).order_by("count")
ibis.to_sql(g)
SELECT
  *
FROM (
  SELECT
    `t0`.`species`,
    `t0`.`island`,
    COUNT(*) AS `count`
  FROM `ibis_read_parquet_pp72u4gfkjcdpeqcawnpbt6sqq` AS `t0`
  GROUP BY
    1,
    2
) AS `t1`
ORDER BY
  `t1`.`count` ASC NULLS LAST

You can mix and match Python and SQL code:

sql = """
SELECT
  species,
  island,
  COUNT(*) AS count
FROM penguins
GROUP BY species, island
""".strip()
  • DuckDB
  • DataFusion
  • PySpark
con = ibis.connect("duckdb://")
t = con.read_parquet("penguins.parquet")
g = t.alias("penguins").sql(sql)
g
┏━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━┓
┃ species   ┃ island    ┃ count ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━┩
│ string    │ string    │ int64 │
├───────────┼───────────┼───────┤
│ Adelie    │ Torgersen │    52 │
│ Adelie    │ Biscoe    │    44 │
│ Adelie    │ Dream     │    56 │
│ Gentoo    │ Biscoe    │   124 │
│ Chinstrap │ Dream     │    68 │
└───────────┴───────────┴───────┘
g.order_by("count")
┏━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━┓
┃ species   ┃ island    ┃ count ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━┩
│ string    │ string    │ int64 │
├───────────┼───────────┼───────┤
│ Adelie    │ Biscoe    │    44 │
│ Adelie    │ Torgersen │    52 │
│ Adelie    │ Dream     │    56 │
│ Chinstrap │ Dream     │    68 │
│ Gentoo    │ Biscoe    │   124 │
└───────────┴───────────┴───────┘

This allows you to combine the flexibility of Python with the scale and performance of modern SQL.

Scaling up and out

Out of the box, Ibis offers a great local experience for working with many file formats. You can scale up with DuckDB (the default backend) or choose from other great options like Polars and DataFusion to work locally with large datasets. Once you hit scaling issues on a local machine, you can continue scaling up with a larger machine in the cloud using the same backend and same code.

If you hit scaling issues on a large single-node machine, you can switch to a distributed backend like PySpark, BigQuery, or Trino by simply changing your connection string.

Stream-batch unification

As of Ibis 8.0, the first stream processing backends have been added. Since these systems tend to support SQL, we can with minimal changes to Ibis support both batch and streaming workloads with a single API. We aim to further unify the batch and streaming paradigms going forward.

Ecosystem

Ibis is part of a larger ecosystem of Python data tools. It is designed to work well with other tools in this ecosystem, and we continue to make it easier to use Ibis with other tools over time.

Ibis already works with other Python dataframes like:

Ibis already works well with visualization libraries like:

Ibis already works well with dashboarding libraries like:

Ibis already works well with machine learning libraries like:

Supported backends

You can install Ibis and a supported backend with pip, conda, mamba, or pixi.

  • pip
  • conda
  • mamba
  • pixi
  • BigQuery
  • ClickHouse
  • DataFusion
  • Druid
  • DuckDB
  • Exasol
  • Flink
  • Impala
  • MSSQL
  • MySQL
  • Oracle
  • Polars
  • PostgreSQL
  • PySpark
  • RisingWave
  • Snowflake
  • SQLite
  • Trino

Install with the bigquery extra:

pip install 'ibis-framework[bigquery]'

Connect using ibis.bigquery.connect.

 
Warning

Note that the ibis-framework package is not the same as the ibis package in PyPI. These two libraries cannot coexist in the same Python environment, as they are both imported with the ibis module name.

See the backend support matrix for details on operations supported. Open a feature request if you’d like to see support for an operation in a given backend. If the backend supports it, we’ll do our best to add it quickly!

Community

Community discussions primarily take place on GitHub and Zulip.

Getting started

If you’re interested in trying Ibis we recommend the getting started tutorial.

반응형
반응형

[python] Working With Mathematical Operations and Permutations. 수학적 연산과 순열

 

https://blog.stackademic.com/ultimate-python-cheat-sheet-practical-python-for-everyday-tasks-c267c1394ee8

 

Ultimate Python Cheat Sheet: Practical Python For Everyday Tasks

(My Other Ultimate Guides)

blog.stackademic.com

 


1. Basic Arithmetic Operations
    To perform basic arithmetic:

sum = 7 + 3  # Addition
difference = 7 - 3  # Subtraction
product = 7 * 3  # Multiplication
quotient = 7 / 3  # Division
remainder = 7 % 3  # Modulus (Remainder)
power = 7 ** 3  # Exponentiation

 

2. Working with Complex Numbers
    To work with complex numbers:

z = complex(2, 3)  # Create a complex number 2 + 3j
real_part = z.real  # Retrieve the real part
imaginary_part = z.imag  # Retrieve the imaginary part
conjugate = z.conjugate()  # Get the conjugate




3. Mathematical Functions
    Common math functions:

import math
root = math.sqrt(16)  # Square root
logarithm = math.log(100, 10)  # Logarithm base 10 of 100
sine = math.sin(math.pi / 2)  # Sine of 90 degrees (in radians)




4. Generating Permutations
    Easy way to generate permutations from a given set:

from itertools import permutations
paths = permutations([1, 2, 3])  # Generate all permutations of the list [1, 2, 3]
for path in paths:
    print(path)


5. Generating Combinations
    Easy way to generate combinations:

from itertools import combinations
combos = combinations([1, 2, 3, 4], 2)  # Generate all 2-element combinations
for combo in combos:
    print(combo)


6. Random Number Generation
    To get a random number:

import random
num = random.randint(1, 100)  # Generate a random integer between 1 and 100


7. Working with Fractions
    When you need to work with fractions:

from fractions import Fraction
f = Fraction(3, 4)  # Create a fraction 3/4
print(f + 1)  # Add a fraction and an integer


8. Statistical Functions
   To get Average, Median, and Standard Deviation:

import statistics
data = [1, 2, 3, 4, 5]
mean = statistics.mean(data)  # Average
median = statistics.median(data)  # Median
stdev = statistics.stdev(data)  # Standard Deviation


9. Trigonometric Functions
    To work with trigonometry:

import math
angle_rad = math.radians(60)  # Convert 60 degrees to radians
cosine = math.cos(angle_rad)  # Cosine of the angle


10. Handling Infinity and NaN
    To work with Infinity and NaN:

import math
infinity = math.inf  # Representing infinity
not_a_number = math.nan  # Representing a non-number (NaN)



 

 
반응형
반응형

[python] 폴더 안의 파일들 이름의 공백 또는 - 를 언더바로 변경하는 프로그램

 

공백( ) 또는 하이픈(-)을 언더바(_)로 변경하는 프로그램을 작성할 수 있습니다. 이 프로그램은 지정된 폴더 내 모든 파일의 이름을 확인하고, 공백 또는 하이픈이 포함된 경우 이를 언더바로 대체하여 이름을 변경합니다.

 

# 파이썬 컴파일 경로가 달라서 현재 폴더의 이미지를 호출하지 못할때 작업디렉토리를 변경한다. 
import os
from pathlib import Path
# src 상위 폴더를 실행폴더로 지정하려고 한다.
###real_path = Path(__file__).parent.parent
real_path = Path(__file__).parent
print(real_path)
#작업 디렉토리 변경
os.chdir(real_path) 


def replace_spaces_in_filenames(folder_path):
    # 폴더 내 모든 파일을 반복
    for filename in os.listdir(folder_path):
        # 파일의 전체 경로 생성
        old_file_path = os.path.join(folder_path, filename)

        # 파일 이름에 공백이 있는지, -도 _로 변경 확인
        if ' ' in filename or  '-' in filename:
            # 공백을 언더바로 대체
            new_filename = filename.replace(' ', '_').replace('-', '_')
            new_file_path = os.path.join(folder_path, new_filename)

            
            # 파일이 존재할경우 덮어쓸지, 빠져나갈지 
            if os.path.exists(new_file_path):
                overwrite = input(f"'{new_file_path}' already exists. Overwrite? (y/n): ")
                if overwrite.lower() == 'y':
                    os.remove(new_file_path)
                else:
                    print("Operation canceled.")
                    exit()
            # 파일 이름 변경
            os.rename(old_file_path, new_file_path)
            
            
            print(f"Renamed: '{filename}' -> '{new_filename}'")
        else:
            print(f"No change: '{filename}'")

# 사용 예시
folder_path = 'path_to_your_folder'  # 여기에 폴더 경로를 입력하세요 
replace_spaces_in_filenames(folder_path)

프로그램 설명

  1. os 모듈: 파일 경로와 관련된 작업을 수행하기 위해 os 모듈을 사용합니다.
  2. 폴더 내 파일 탐색:
    • os.listdir(folder_path)를 사용하여 지정된 폴더 내의 모든 파일 및 하위 디렉토리 이름을 가져옵니다.
    • for filename in os.listdir(folder_path)를 사용하여 각 파일을 순회합니다.
  3. 공백과 하이픈을 언더바로 변경:
    • if ' ' in filename or '-' in filename: 조건문을 사용하여 파일 이름에 공백 또는 하이픈이 포함되어 있는지 확인합니다.
    • filename.replace(' ', '_').replace('-', '_')를 사용하여 공백과 하이픈을 언더바로 대체합니다.
  4. 파일 이름 변경:
    • os.rename(old_file_path, new_file_path)를 사용하여 파일 이름을 변경합니다.
  5. 사용 방법:
    • folder_path에 파일 이름을 변경할 폴더의 경로를 입력합니다.
    • 프로그램을 실행하면 폴더 내 모든 파일의 이름에서 공백과 하이픈이 언더바로 변경됩니다.

사용 예시

폴더 경로를 지정하여 프로그램을 실행하면, 그 폴더 안의 모든 파일 이름에서 공백 또는 하이픈이 언더바로 변경됩니다. 예를 들어, path_to_your_folder가 C:/Users/YourName/Documents/TestFolder인 경우:

반응형

+ Recent posts