반응형
반응형

Matplotlib Tutorial - 파이썬으로 데이터 시각화하기

 

https://wikidocs.net/book/5011

 

Matplotlib Tutorial - 파이썬으로 데이터 시각화하기

## 도서 소개 - 이 책은 파이썬의 대표적인 데이터 시각화 라이브러리인 Matplotlib의 사용법을 소개합니다. - 30여 개 이상의 다양한 주제에 대해 100개…

wikidocs.net

Matplotlib 데이터 시각화와 2D 그래프 플롯에 사용되는 파이썬 라이브러리입니다.

Matplotlib을 이용하면 아래 그림과 같이 다양한 유형의 그래프를 간편하게 그릴 수 있습니다.

 

 

Matplotlib의 간단한 사용법을 소개하고, 예제와 함께 다양한 그래프를 그려봅니다.

예제들은 Matplotlib 공식 홈페이지를 참고해서 만들었습니다.

순서는 아래와 같습니다.

 

Contents

00. Matplotlib 설치하기
01. Matplotlib 기본 사용
02. Matplotlib 숫자 입력하기
03. Matplotlib 축 레이블 설정하기
04. Matplotlib 범례 표시하기
05. Matplotlib 축 범위 지정하기
06. Matplotlib 선 종류 지정하기
07. Matplotlib 마커 지정하기
08. Matplotlib 색상 지정하기
09. Matplotlib 그래프 영역 채우기
10. Matplotlib 축 스케일 지정하기
11. Matplotlib 여러 곡선 그리기
12. Matplotlib 그리드 설정하기
13. Matplotlib 눈금 표시하기
14. Matplotlib 타이틀 설정하기
15. Matplotlib 수평선/수직선 표시하기
16. Matplotlib 막대 그래프 그리기
17. Matplotlib 수평 막대 그래프 그리기
18. Matplotlib 산점도 그리기
19. Matplotlib 3차원 산점도 그리기
20. Matplotlib 히스토그램 그리기
21. Matplotlib 에러바 그리기
22. Matplotlib 파이 차트 그리기
23. Matplotlib 히트맵 그리기
24. Matplotlib 여러 개의 그래프 그리기
25. Matplotlib 컬러맵 설정하기
26. Matplotlib 텍스트 삽입하기
27. Matplotlib 수학적 표현 사용하기
28. Matplotlib 그래프 스타일 설정하기
29. Matplotlib 이미지 저장하기
30. Matplotlib 객체 지향 인터페이스 1
31. Matplotlib 객체 지향 인터페이스 2
32. Matplotlib 축 위치 조절하기
33. Matplotlib 이중 Y축 표시하기
34. Matplotlib 두 종류의 그래프 그리기
35. Matplotlib 박스 플롯 그리기
36. Matplotlib 바이올린 플롯 그리기
37. Matplotlib 다양한 도형 삽입하기
38. Matplotlib 다양한 패턴 채우기

 

반응형
반응형

savefig 0.0.4

 

pip install savefig

 

https://pypi.org/project/savefig/

 

Save matplotlib figures with embedded metadata for reproducibility and profit

 

반응형
반응형

pip install matplotlib

matplotlib 3.7.2

https://pypi.org/project/matplotlib/

 

matplotlib

Python plotting package

pypi.org

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

Check out our home page for more information.

Matplotlib produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in Python scripts, Python/IPython shells, web application servers, and various graphical user interface toolkits.

Install

See the install documentation, which is generated from /doc/users/installing/index.rst

Contribute

You've discovered a bug or something else you want to change - excellent!

You've worked out a way to fix it -- even better!

You want to tell us about it -- best of all!

Start at the contributing guide!

반응형
반응형

Choosing Colormaps in Matplotlib

https://matplotlib.org/stable/tutorials/colors/colormaps.html

 

Choosing Colormaps in Matplotlib — Matplotlib 3.5.1 documentation

Colormaps are often split into several categories based on their function (see, e.g., [Moreland]): First, we'll show the range of each colormap. Note that some seem to change more "quickly" than others. Sequential2 Many of the \(L^*\) values from the Seque

matplotlib.org

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import cm
from colorspacious import cspace_converter
cmaps = {}

gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))


def plot_color_gradients(category, cmap_list):
    # Create figure and adjust figure height to number of colormaps
    nrows = len(cmap_list)
    figh = 0.35 + 0.15 + (nrows + (nrows - 1) * 0.1) * 0.22
    fig, axs = plt.subplots(nrows=nrows + 1, figsize=(6.4, figh))
    fig.subplots_adjust(top=1 - 0.35 / figh, bottom=0.15 / figh,
                        left=0.2, right=0.99)
    axs[0].set_title(f'{category} colormaps', fontsize=14)

    for ax, name in zip(axs, cmap_list):
        ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name))
        ax.text(-0.01, 0.5, name, va='center', ha='right', fontsize=10,
                transform=ax.transAxes)

    # Turn off *all* ticks & spines, not just the ones with colormaps.
    for ax in axs:
        ax.set_axis_off()

    # Save colormap list for later.
    cmaps[category] = cmap_list

 

plot_color_gradients('Perceptually Uniform Sequential',
                     ['viridis', 'plasma', 'inferno', 'magma', 'cividis'])

plot_color_gradients('Sequential',
                     ['Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds',
                      'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu',
                      'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn'])

 

 

 

 

 

반응형
반응형

matplotlib colormap

colormap에 대한 설명을 찾기가 어렵다.
자세하게 설명을 붙여서 정리하고 싶은데, colormap 사용법은 많은데 설명은 없다.
matplotlib 소스코드를 분석하는 중에
colormap을 알아야 하는 상황에 처하게 되서 부족하지만 정리해 본다.

 

내가 생각할 때는
숫자를 색상에 매핑시키기 위한 색상 지도이다.
다만 테이블처럼 2차원 형태가 아니라 30cm 자와 같이 1차원 형태의 색상 배열이다.

갖고 있는 데이터를 그래프에 표시할 때
일반적인 색상을 사용해서 표시하는 것은 의미가 없다.
데이터를 색상으로 표현하는 것은 말이 되지 않는다.
그러나, 잘 정리된 colormap을 사용한다면 시각적으로 엄청난 효과를 거둘 수 있다.

가령, 지구를 평균 기온에 따라 표현한다고 했을 때
추운 지역은 파란색으로, 더운 지역은 빨간색으로 표시할 수 있다.
결국 지구상의 모든 영역은 파랑과 빨강이 연결된 그라데이션에 포함된 어떤 색상이 된다.
이와 같이 특정 데이터에 대해 사용될 수 있는 색상표를 colormap이라고 부른다.

 

# matplotlib 도움말

 

# 과학 데이터를 표시하기에 적합한 colormap 모음.
미국 지도에 인구 밀도에 따른 색상으로 표시한 그래픽은 압권.

 

# colormap 한글 설명.
많은 설명은 아니지만, 일부 매핑에 대해 상세한 설명을 제공한다.



출처: https://pythonkim.tistory.com/82 [파이쿵]

반응형
반응형

맷플롯립(Matplotlib)은 데이터를 차트(chart)나 플롯(plot)으로 시각화(visulaization)하는 패키지입니다. 데이터 분석에서 Matplotlib은 데이터 분석 이전에 데이터 이해를 위한 시각화나, 데이터 분석 후에 결과를 시각화하기 위해서 사용됩니다.

아나콘다를 설치하지 않았다면 아래의 커맨드로 Matplotlib를 별도 설치할 수 있습니다.

pip install matplotlib
> ipython
...
In [1]: import matplotlib as mpl
In [2]: mpl.__version__
Out[2]: '2.2.3'

Matplotlib을 다 설치하였다면 Matplotlib의 주요 모듈인 pyplot을 임포트할 수 있습니다. 해당 모듈을 임포트할 때는 주로 plt라는 이름으로 사용합니다. 또한 주피터 노트북으로 matplotlib을 실습하기 위해서는 주피터 노트북에 그림을 표시하도록 지정하는 %matplotlib inline 또한 우선 수행해야 합니다. 아래의 모든 실습들은 아래 내용을 임포트하였다고 가정합니다.

pyplot의 경우, 주로 plt라는 명칭으로 임포트하는 것이 관례입니다.

%matplotlib inline
import matplotlib.pyplot as plt

라인 플롯 그리기

plot()은 라인 플롯을 그리는 기능을 수행합니다. plot() X축과 Y축의 값을 기재하고 그림을 표시하는 show()를 통해서 시각화해봅시다. 그래프에는 제목을 지정해줄 수 있는데 이 경우에는 title('원하는 제목')을 사용합니다. 여기서는 그래프에 'test'라는 제목을 넣어봅시다.

사실 주피터 노트북에서는 show()를 사용하지 않더라도 그래프가 자동으로 렌더링 되므로 그래프가 시각화가 되는 것을 확인할 수 있지만, 여기서는 다른 개발 환경에서 사용할 때 또한 가정하여 show()를 실습 코드에 삽입하였습니다.

plt.title('students')
plt.plot([1,2,3,4],[2,4,8,6])
plt.plot([1.5,2.5,3.5,4.5],[3,5,8,10]) #라인 새로 추가
plt.xlabel('hours')
plt.ylabel('score')
plt.legend(['A student', 'B student']) #범례 삽입
plt.show()

 

 

반응형

+ Recent posts