반응형
반응형

생활코딩 - 머신러닝야학

 

서말 : seomal.com/map/1

 

Seomal - 서말

 

seomal.com

라이브 : youtu.be/HUVG4ZnwN5k

머신러닝야학?

머신러닝야학
혼자서 외롭게 머신러닝을 공부하고 있는 분들을
지원하고, 응원하기 위해서 만들어진
작은 학교입니다.

지금부터 우리는 10일 동안
동영상과 전자책으로 제작된 머신러닝 수업을 공부하면서
머신러닝의 흥미진진한 세계를 탐험할 것입니다.

그 과정에서
현업에서 활동 중인 엔지니어들의
기술지원을 받을 수 있습니다.

같은 목표를 향해서 달려가는
동료를 만날 수도 있습니다.

이 여행이 끝나고 나면
머신러닝이 무엇인지 알게 될 것이고,
머신러닝으로 하고 싶은 것이 생길 것입니다.
다시 말해서 꿈을 갖게 될 것입니다.

우리 학교의 목표는 꿈을 먼저 갖는 것입니다.
꿈이 있다면 능력은 차차로 갖춰지게 되어 있습니다.
꿈을 꿉시다.

 

일정

10일간 온라인으로 진행됩니다. 주말에는 쉽니다.

  • 2021.1.4 : 개강
  • 2021.1.15 : 종강
  • 2021.1.19 : 수료식

 

반응형
반응형
대용량 CSV 파일 분할 exe - Free Huge CSV Splitter

국가공간정보포털의 이용과 관심에 감사합니다.

대용량 CSV 파일 분할 EXE 입니다.

File name : split.exe
License : GNU General Public License version 3.0 (GPLv3)

 

www.nsdi.go.kr/lxportal/index.html?menuno=2772&cateIndex=712&bbsno=635&boardno=552

반응형
반응형

자주 묻는 질문

1) 내 컴퓨터에 어떤 GPU가 있는지 어떻게 알 수 있습니까?답변 :

Windows 컴퓨터 :

  1. 바탕 화면을 마우스 오른쪽 버튼으로 클릭
  2. 팝업 창에 "NVIDIA 제어판"또는 "NVIDIA 디스플레이"가 표시되면 NVIDIA GPU가있는 것입니다.
  3. 팝업 창에서 "NVIDIA 제어판"또는 "NVIDIA 디스플레이"를 클릭합니다.
  4. "그래픽 카드 정보"를보십시오.
  5. NVIDIA GPU의 이름이 표시됩니다.

Apple 컴퓨터 :

  1. "Apple 메뉴"를 클릭하십시오.
  2. "이 매킨토시에 관하여"를 클릭하십시오
  3. "추가 정보"를 클릭하십시오.
  4. 컨텐츠 목록에서 "그래픽 / 디스플레이"를 선택합니다.

2) 컴퓨터에 CUDA 지원 GPU가 있습니까?답변 : 위의 목록을 확인하여 GPU가 있는지 확인하십시오. 그렇다면 컴퓨터에 CUDA 가속 응용 프로그램을 활용할 수있는 최신 GPU가 있음을 의미합니다.3) 최신 드라이버가 있는지 어떻게 알 수 있습니까?답변 : www.nvidia.com/drivers로 이동하십시오.4) CUDA 지원 GPU 또는 시스템은 어떻게 구할 수 있습니까?답변 :
HPC 및 슈퍼 컴퓨팅 애플리케이션 용 Tesla는 www.nvidia.com/object/tesla_wtb.html
로 이동하십시오. 엔터테인먼트 용 GeForce는 www.nvidia.com/object/geforce_family.html
로 이동하십시오. 전문적인 시각화를위한 Quadro는 www. .nvidia.com / object / workstation_wheretobuy.html5) CUDA Toolkit을 다운로드하려면 어떻게해야합니까?답변 : CUDA 툴킷 다운로드로 이동 하십시오 .

 

tensorFlow - GPU 지원  www.tensorflow.org/install/gpu?hl=ko

 

GPU 지원  |  TensorFlow

참고: GPU 지원은 CUDA® 지원 카드가 있는 Ubuntu 및 Windows에 제공됩니다. TensorFlow GPU 지원에는 다양한 드라이버와 라이브러리가 필요합니다. 설치를 단순화하고 라이브러리 충돌을 방지하려면 GPU를

www.tensorflow.org

TensorFlow GPU 지원에는 다양한 드라이버와 라이브러리가 필요합니다. 설치를 단순화하고 라이브러리 충돌을 방지하려면 GPU를 지원하는 TensorFlow Docker 이미지를 사용하는 것이 좋습니다(Linux만 해당). 이 설정에는 NVIDIA® GPU 드라이버만 있으면 됩니다.

 

Download Drivers | NVIDIA

 

www.nvidia.com

Pip 패키지

사용 가능한 패키지, 시스템 요구사항 및 명령어는 pip 설치 가이드를 참고하세요. TensorFlow pip 패키지에는 CUDA® 지원 카드에 대한 GPU 지원이 포함됩니다.

 

pip install tensorflow

이 가이드에서는 최신 안정적인 TensorFlow 출시의 GPU 지원 및 설치 단계를 설명합니다.

이전 버전의 TensorFlow

1.15 이하 버전의 경우 CPU와 GPU 패키지가 다음과 같이 구분됩니다.

 

pip install tensorflow==1.15      # CPU
pip install tensorflow-gpu==1.15  # GPU

하드웨어 요구사항

다음과 같은 GPU 사용 기기가 지원됩니다.

  • CUDA® 아키텍처 3.5, 3.7, 5.2, 6.0, 6.1, 7.0 이상을 포함하는 NVIDIA® GPU 카드 CUDA® 지원 GPU 카드 목록을 참고하세요.
  • NVIDIA® Ampere GPU(CUDA 아키텍처 8.0) 이상이 적용된 시스템에서 커널은 PTX에서 JIT로 컴파일되며 TensorFlow는 시작하는 데 30분 이상 걸릴 수 있습니다. 이 오버헤드는 ‘export CUDA_CACHE_MAXSIZE=2147483648’를 사용하여 기본 JIT 캐시 크기를 늘려 첫 번째 시작으로 제한될 수 있습니다. 자세한 내용은 JIT 캐싱을 참고하세요.
  • 지원되지 않는 CUDA® 아키텍처를 사용하는 GPU의 경우 또는 PTX에서 JIT 컴파일을 방지하거나 다른 버전의 NVIDIA® 라이브러리를 사용하려면 Linux 소스에서 빌드 가이드를 참고하세요.
  • 패키지에는 지원되는 최신 CUDA® 아키텍처를 제외하고 PTX 코드가 포함되어 있지 않습니다. 따라서 CUDA_FORCE_PTX_JIT=1이 설정된 경우 이전 GPU에서 TensorFlow가 로드되지 않습니다. 자세한 내용은 애플리케이션 호환성을 참고하세요.

참고: '상태: 기기 커널 이미지가 잘못되었습니다'라는 오류 메시지는 TensorFlow 패키지에 아키텍처의 PTX가 포함되어 있지 않음을 나타냅니다. 소스에서 TensorFlow를 빌드하여 컴퓨팅 기능을 사용 설정할 수 있습니다.

소프트웨어 요구사항

다음 NVIDIA® 소프트웨어가 시스템에 설치되어 있어야 합니다.


Nvidia CUDA 지원 GPU 리스트

developer.nvidia.com/cuda-gpus

 

CUDA GPUs | NVIDIA Developer

HomeHigh Performance ComputingTools & EcosystemCUDA GPUs Recommended GPU for Developers NVIDIA TITAN RTX NVIDIA TITAN RTX is built for data science, AI research, content creation and general GPU development. Built on the Turing architecture, it features 46

developer.nvidia.com

 

반응형
반응형

딥 러닝을 이용한 자연어 처리 입문

wikidocs.net/book/2155

 

위키독스

온라인 책을 제작 공유하는 플랫폼 서비스

wikidocs.net

 

반응형
반응형
반응형
반응형
https://www.facebook.com/groups/TensorFlowKR/permalink/650448208629574/


안녕하세요!
지난 달부터 개발하기 시작했던 한국어 오픈소스 자연어처리 라이브러리 프로젝트 Koshort(코숏, 한국 길고양이를 부르는 애칭일지도..)을 소개합니다! Koshort은 현재 총 3가지 파이썬 패키지로 이루어져있으며, 다음과 같은 특징을 공통으로 가집니다.

- Windows, Linux, Mac에서 모두 사용이 가능하도록 노력합니다. (호환성 문제에 관해서는 github issue나 pull request로 알려주세요!)
- 손쉬운 설치 (코드 1줄 내지 2줄)
- Python3를 권장합니다. (pyeunjeon, goorm은 python2에서도 잘 동작합니다!)
- 쉽고 배우기 쉬운 고수준(High-level) API를 제공합니다.

프로젝트 홈페이지:
https://koshort.github.io/

#Koshort (코숏): 파이썬 한국어 온라인 트렌드 스트리밍(현재 네이버 검색어, 트위터 실시간 트윗 지원, 디시인사이드 검토중!)
https://github.com/koshort/koshort

#Pyeunjeon (파이은전): 은전한닢 프로젝트와 mecab 기반의 한국어 형태소 분석기의 독립형 python 인터페이스
https://github.com/koshort/pyeunjeon

#Goorm (구름): 한국어 워드 클라우드를 위한 wordcloud 패키지 wrapper
https://github.com/koshort/goorm

현재 부족한 점이 많습니다. 깃허브 이슈나 pull-request를 통한 많은 참여 부탁드립니다 🙂

개발자 깃허브: https://github.com/nyanye

...
반응형

+ Recent posts