반응형
반응형

기술 인력 개발 기업 플루럴사이트Pluralsight)의 최근 AI 기술 보고서에 따르면 임원 및 IT 리더의 40%만이 직원을 대상으로 공식적인 AI 교육을 실시하고 있다고 답했다. 그리고 직원 AI 교육에 대한 CIO의 책임이 점점 더 커짐에 따라 IT 리더는 기업의 AI 준비성 책임 측면에서 해법을 찾아내야 할 처지에 놓일 가능성이 크다는 진단이다.

직원들도 주목하고 있다. 디지털 워크플레이스 공급업체 Slingshot이 8월에 발표한 설문조사 결과에 따르면 응답 직원의 다수는 AI에 대해 제대로 교육이나 훈련을 받지 못했다고 느끼고 있었다.

플루럴사이트의 생성형 AI 수석 저자 데이비드 해리스는 “일하는 방식을 완전히 뒤엎는 새로운 기술이 등장할 때마다 많은 사람들이 촉각을 곤두세운다. 내가 보기에 모든 비즈니스 관계자는 AI를 어떤 식으로든 도입해야 한다고 생각한다. 그러나 그 방법을 정확히 아는 사람은 드물며, 직원들의 지식 수준에 대해 확산하는 이도 거의 없다"라고 말했다.

그에 따르면 채용 시장을 통해 AI 기술 격차를 메우기도 쉽지 않다. 비교적 최근의 기술인 데다 빠르게 발전하고 있기 때문이다. 해리스를 비롯한 업계 전문가들은 또 개발자, 영업사원, 사무직에 이르는 모든 직원이 AI 교육을 통해 혜택을 받을 수 있다고 강조했다. 

한편 IT 직원들조차도 AI가 일자리를 대체하는 것에 대해 우려하고 있다. 플루럴사이트의 설문조사에 참여한 IT 전문가 중 거의 4분의 3은 AI가 자신의 기술을 쓸모없게 만드는 상황을 우려한다고 답했다.

인재 유지에 영향
이키가이 랩스(Ikigai Labs)의 사장인 카말 알루왈리아는 AI가 고용 시장에 큰 영향을 미칠 것이기에 직원 대상의 AI 교육이 필수적이라고 강조했다. 이키가이 랩스는 소량의 기업 데이터로 작동하는 생성형 AI 툴을 제공하는 업체다.

AI와 일자리 사이의 관계에 대한 알루왈리아의 전망은 복합적이다. 그는 AI가 오늘날 IT 일자리의 3분의 1을 없애지만, 나머지 3분의 1은 AI를 통해 향상될 것이라고 예측했다. 또 미래 일자리의 또 다른 3분의 1은 AI에 의해 창출될 것으로 그는 전망했다.

HR 회사 에잇폴드닷에이아이의 사장을 역임한 바 있는 알루왈리아는 “일자리 대체 현상이 상당할 것이며, 우리 생각보다 더 빨리 일어날 것이라고 본다. 나는 만나는 모든 사람들에게 업무 적절성을 유지하기 위해서는 기술을 배울 준비가 되어 있어야 한다고 직설적으로 이야기하고 있다”라고 말했다.

그에 따르면 조직은 지금 당장 AI 교육에 투자할 필요가 있다. CIO와 기타 경영진은 직원들이 최신 AI 기술을 지속적으로 학습하도록 장려해야 하며, AI 교육을 잘 활용한 직원들의 성공 사례를 알려야 한다. 시장에 AI 전문 인력이 부족하다는 점을 감안할 때 더욱 그렇다.

알루왈리아는 “재교육, 업스킬링에 대한 시각을 바꿔야 한다. 경영진이 이러한 변화를 방관하고 다른 중간 관리자나 개인이 처리하도록 조치해선 안 된다. 경영진이 변화를 지지하도록 해야 한다. 그래야 분위기가 조성되기 때문이다”라고 말했다.

플루럴사이트 설문조사에 따르면 IT 전문가의 74%가 AI로 인해 자신의 기술이 무의미해질 것이라고 우려하는 반면, 81%는 현재 자신의 역할에 AI를 통합할 수 있다고 확신하고 있었다. 점점 더 많은 IT 전문가들이 AI 교육을 자신의 커리어에 필수적인 것으로 바라보고 있었다. AI 업스킬링에 IT 전문가를 적극적으로 참여시키지 않는다면 인재가 빠져나갈 가능성이 커지는 셈이다.

조화롭게 구성
디지털 컨설팅 회사인 웨스트 먼로 파트너스의 AI 및 엔지니어링 부문 수석 파트너인 에릭 브라운은 만연한 위기감이 틀리지 않다고 진단하며, 조직과 직원 모두 '모든 곳에 AI가 존재하는' 미래에 대비해야 한다고 말했다.

그는 이어 AI 교육은 직원과 AI 간의 '조화'를 구축하고 인간이 결정권을 행사하는 모습을 보여주는 데 초점을 맞춰야 한다고 설명했다. “인간의 창의성과 비판적 사고를 AI의 효율성을 결합해야 최상의 결과를 얻을 수 있다"라고 브라운은 말했다.

또 일부 직원은 다른 직원보다 AI의 영향을 더 많이 받겠지만, 교육은 모든 직원에게 제공되어야 한다. 그는 “최고 경영진을 포함해 모든 직원에 대해 투자해야 한다. 교육에 대한 접근성을 민주화한다는 것은 모든 사람이 AI를 발전시키는 문화를 조성하는 데 기여하고 책임을 질 수 있다는 것을 의미한다”라고 그는 말했다.

AI 교육의 필요성을 강조하는 목소리가 높지만 현실적인 여러 어려움이 있다. 데이터 분석 및 AI 도구 제공업체인 Seeq의 CTO 더스틴 존슨은 교육에 참여할 시간이 부족한 직원이 많으며, 지속적인 교육이라면 더욱 그렇다고 지적했다. 직원 개개인의 필요에 맞춰 참여하기 적합한 적시 교육 과정을 마련해야 할 이유라고 그는 덧붙였다. 그에 따르면 이는 AI 교육 도구에 주목할 이유이기도 하다. AI 기반 교육 도구는 자료를 통합하고 고객 기업 고유의 특정 장비와 프로세스에 맞는 정보를 제공할 수 있기 때문이다. 

선구자들에게 기회를
존슨은 또 AI에 적극적인 직원들이 AI로 작업할 수 있도록 허용할 것을 권장했다. 이들 선구자들이 성공을 거두고 환각 및 기타 AI 문제를 피한 방법을 보여주는 웨비나 및 기타 이벤트를 개최하는 방안도 검토할 만하다는 설명이다.

“이러한 세션은 AI에게 질문하는 방법, 문서를 정확히 검색하는 방법 등을 공유할 수 있는 기회를 제공한다. 또 산출 결과를 검증할 수 있는 방법을 확산시킴으로써 기술에 대한 신뢰도를 높이게 된다”라고 그는 말했다.

한편 AI 기술이 빠르게 발전하고 있다는 점이 감안하라고 플로럴사이트의 해리스는 전했다. 새로운 기능과 용도를 반영하기 위해 AI 교육 과정을 정기적으로 업데이트할 필요가 있다. 어떤 경우에는 AI 교육 과정에서 제공되는 정보가 일주일도 안 되어 구식이 될 수 있다고 그는 덧붙였다. 

해리스는 “연 단위, 월 단위의 업데이트 소식이 아니다. 어제와 내일의 문제다”라고 말했다. https://www.ciokorea.com/news/349675

반응형
반응형

Pandas Tutorial

https://www.w3schools.com/python/pandas/default.asp

 

Pandas Tutorial

W3Schools offers free online tutorials, references and exercises in all the major languages of the web. Covering popular subjects like HTML, CSS, JavaScript, Python, SQL, Java, and many, many more.

www.w3schools.com

Pandas is a Python library.

Pandas is used to analyze data.

 

https://pypi.org/project/pandas/

pip install pandas

 

 

pandas

Powerful data structures for data analysis, time series, and statistics

pypi.org

 

Pandas   http://bigdata.dongguk.ac.kr/lectures/Python/_book/pandas.html#pandas-dataframe

  • 데이터 처리와 분석을 위한 라이브러리
  • 행과 열로 이루어진 데이터 객체를 만들어 다룰 수 있음
  • 대용량의 데이터들을 처리하는데 매우 편리
  • pandas 자료구조
    • Series: 1차원
    • DataFrame: 2차원
    • Panel: 3차원
  • pandas 로딩
    • import numpy as np # 보통 numpy와 함께 import
    • import pandas as pd
""" Pandas Tutorial
https://www.w3schools.com/python/pandas/default.asp

Pandas is a Python library.
Pandas is used to analyze data.
"""

#import pandas
import pandas as pd #Now the Pandas package can be referred to as pd instead of pandas.


mydataset = {
  'cars': ["BMW", "Volvo", "Ford"],
  'passings': [3, 7, 2]
}

myvar = pd.DataFrame(mydataset)

print(myvar)


import pandas as pd
print(pd.__version__)
반응형
반응형

데이터 리터러시( Data literacy )는 데이터 를 정보 로 읽고, 이해하고, 생성하고, 전달할 수 있는 능력 입니다. 일반 개념으로서의 문해력 과 마찬가지로 데이터 문해력은 데이터 작업과 관련된 역량 에 중점을 둡니다. 그러나 데이터를 읽고 이해하는 것과 관련된 특정 기술이 필요하기 때문에 텍스트를 읽는 능력과 유사하지 않습니다. 

 

리터러시(literacy)는 글을 읽고 해독하는 능력을 의미한다. 데이터 리터러시는 데이터를 목적에 맞게 활용하는 데이터 해석 능력을 말한다. 여기서의 데이터는 고도의 처리 기술이 필요한 빅데이터에서 단순 수치 등도 포함한다. 수많은 데이터가 쏟아지는 상황에서 데이터에 담겨있는 의미를 파악하여 의미를 파악해 내는 능력은 데이터 활용 과정 전반에 필요한 역량이다. 빅데이터 시대에 데이터 리터러시는 개인에게도 필요한 능력이며, 데이터 수집 역량, 관리 역량, 가공 및 분석 역량, 시각화 역량, 기획 역량 등이 데이터를 활용하는 능력이다.

 

 

데이터 수집  데이터 공유 가 일상화되고 데이터 분석  빅 데이터 가 뉴스, 비즈니스, [2] 정부 [3] 및 사회 에서 일반적인 아이디어가 됨에 따라 [4] 학생, 시민 및 독자에게 점점 더 중요해지고 있습니다. 데이터 활용 능력이 있습니다. 이 개념은 일반적으로 자동화된 수단을 통한 데이터 분석과 결과의 해석 및 적용과 관련된 데이터 과학과 관련이 있습니다. [5]

데이터 리터러시(Data literacy)는 그래프와 차트를 읽고 데이터에서 결론을 도출하는 능력을 포함하여 데이터의 의미를 이해하는 것을 포함하기 때문에 통계 리터러시 와 구별됩니다 . [6] 한편, 통계적 소양은 그래프, 표, 진술, 설문조사, 연구와 같은 "일상적인 매체에서 요약 통계를 읽고 해석하는 능력"을 의미한다. [6]

 

정보를 찾고 사용하기 위한 가이드로서 사서 는 학생과 연구원을 위한 데이터 활용 능력에 대한 워크샵을 이끌고 자신의 데이터 활용 능력을 개발하기 위해 노력합니다. [7]

기관 및 학문 분야에 걸쳐 도서관 교육 프로그램에서 적용 가능한 공통 참조 프레임워크로 사용할 수 있는 일련의 핵심 역량 및 내용이 제안되었습니다. [8]

사서가 만든 리소스에는 MIT 의 데이터 관리 및 출판 자습서, EDINA 연구 데이터 관리 교육(MANTRA), 에딘버러 대학의 데이터 라이브러리 및 미네소타 대학 도서관의 구조 엔지니어를 위한 데이터 관리 과정이 있습니다.

 

반응형

+ Recent posts