반응형
반응형

파이썬 버전 3의 표준 타입 계층 구조

파이썬 버전 3의 표준 타입 계층 구조

반응형
반응형


특히 가상 환경에 설치된 패키지는 목록을 저장해 두었다가 나중에 다시 설치할 수 있습니다. 

 

https://dojang.io/mod/page/view.php?id=2470

 

파이썬 코딩 도장: 47.11 가상환경 사용하기

파이썬을 사용하다 보면 pip로 패키지를 설치하게 되는데 이 패키지들은 파이썬 설치 폴더(디렉터리)의 Lib/site-packages 안에 저장됩니다. 그래서 pip로 설치한 패키지는 모든 파이썬 스크립트에서

dojang.io

글로벌 파이썬 환경에서 패키지가 호환되지 않는 경우
파이썬 가상 환경으로 독립된 공간을 구성


다음과 같이 pip freeze로 패키지 목록과 버전 정보를 requirements.txt 파일에 저장합니다
(git 등으로 버전 관리를 할 때 저장소에 설치된 패키지를 모두 추가하지 않고, requirements.txt 파일만 관리하면 됩니다).

(example) C:\project\example>pip freeze > requirements.txt

requirements.txt 파일의 내용대로 패키지를 설치하려면 pip install에서 -r 또는 --requirement 옵션을 사용합니다.

(example) C:\project\example>pip install -r requirements.txt


requirement.txt 파일의 내용대로 패키지를 삭제하려면 pip uninstall에서 -r 또는 --requirement 옵션을 사용합니다.


(example) C:\project\example>pip uninstall -r requirements.txt

 

반응형
반응형

FastAPI  프레임워크, 고성능, 간편한 학습, 빠른 코드 작성, 준비된 프로덕션

 

https://fastapi.tiangolo.com/ko/

 

FastAPI is a modern, fast (high-performance), web framework for building APIs with Python 3.7+ based on standard Python type hints.

 

https://github.com/tiangolo/fastapi

 

GitHub - tiangolo/fastapi: FastAPI framework, high performance, easy to learn, fast to code, ready for production

FastAPI framework, high performance, easy to learn, fast to code, ready for production - GitHub - tiangolo/fastapi: FastAPI framework, high performance, easy to learn, fast to code, ready for produ...

github.com

FastAPI는 현대적이고, 빠르며(고성능), 파이썬 표준 타입 힌트에 기초한 Python3.6+의 API를 빌드하기 위한 웹 프레임워크입니다.

주요 특징으로:

  • 빠름: (Starlette과 Pydantic 덕분에) NodeJS  Go와 대등할 정도로 매우 높은 성능. 사용 가능한 가장 빠른 파이썬 프레임워크 중 하나.
  • 빠른 코드 작성: 약 200%에서 300%까지 기능 개발 속도 증가. *
  • 적은 버그: 사람(개발자)에 의한 에러 약 40% 감소. *
  • 직관적: 훌륭한 편집기 지원. 모든 곳에서 자동완성. 적은 디버깅 시간.
  • 쉬움: 쉽게 사용하고 배우도록 설계. 적은 문서 읽기 시간.
  • 짧음: 코드 중복 최소화. 각 매개변수 선언의 여러 기능. 적은 버그.
  • 견고함: 준비된 프로덕션 용 코드를 얻으십시오. 자동 대화형 문서와 함께.
  • 표준 기반: API에 대한 (완전히 호환되는) 개방형 표준 기반: OpenAPI (이전에 Swagger로 알려졌던) 및 JSON 스키마.

* 내부 개발팀의 프로덕션 애플리케이션을 빌드한 테스트에 근거한 측정

from typing import Union

from fastapi import FastAPI

app = FastAPI()


@app.get("/")
def read_root():
    return {"Hello": "World"}


@app.get("/items/{item_id}")
def read_item(item_id: int, q: Union[str, None] = None):
    return {"item_id": item_id, "q": q}

골드 스폰서

 

 

 

 

 

 

 

 

 

 

다른 스폰서

의견들

"[...] 저는 요즘 FastAPI를 많이 사용하고 있습니다. [...] 사실 우리 팀의 마이크로소프트 ML 서비스 전부를 바꿀 계획입니다. 그중 일부는 핵심 Windows와 몇몇의 Office 제품들이 통합되고 있습니다."

Kabir Khan - 마이크로소프트 (ref)

"FastAPI 라이브러리를 채택하여 예측을 얻기 위해 쿼리를 실행 할 수 있는 REST 서버를 생성했습니다. [Ludwig을 위해]"

Piero Molino, Yaroslav Dudin 그리고 Sai Sumanth Miryala - 우버 (ref)

"Netflix는 우리의 오픈 소스 배포판인 위기 관리 오케스트레이션 프레임워크를 발표할 수 있어 기쁩니다: 바로 Dispatch입니다! [FastAPI로 빌드]"

Kevin Glisson, Marc Vilanova, Forest Monsen - 넷플릭스 (ref)

"FastAPI가 너무 좋아서 구름 위를 걷는듯 합니다. 정말 즐겁습니다!"

Brian Okken - Python Bytes 팟캐스트 호스트 (ref)

"솔직히, 당신이 만든 것은 매우 견고하고 세련되어 보입니다. 여러 면에서 Hug가 이렇게 되었으면 합니다 - 그걸 만든 누군가를 보는 것은 많은 영감을 줍니다."

Timothy Crosley - Hug 제작자 (ref)

"REST API를 만들기 위해 현대적인 프레임워크를 찾고 있다면 FastAPI를 확인해 보십시오. [...] 빠르고, 쓰기 쉽고, 배우기도 쉽습니다 [...]"

"우리 API FastAPI로 바꿨습니다 [...] 아마 여러분도 좋아하실 것입니다 [...]"

Ines Montani - Matthew Honnibal - Explosion AI 설립자 - spaCy 제작자 (ref) - (ref)
반응형
반응형

Python 3 Cheat Sheet

https://perso.limsi.fr/pointal/_media/python:cours:mementopython3-english.pdf

반응형
반응형

Cheat-Sheets.org - 프로그램 커닝페이퍼

 

https://www.cheat-sheets.org/

 

Cheat-Sheets.org

All cheat sheets, round-ups, quick reference cards, quick reference guides and quick reference sheets in one page.

www.cheat-sheets.org

  python 3 cheat Sheet : https://perso.limsi.fr/pointal/_media/python:cours:mementopython3-english.pdf

https://overapi.com/python

 

Python Cheat Sheet | OverAPI.com

 

overapi.com

 

https://www.cheat-sheets.org/#Python

 

Cheat-Sheets.org

All cheat sheets, round-ups, quick reference cards, quick reference guides and quick reference sheets in one page.

www.cheat-sheets.org

반응형
반응형

Google Colaboratory - python 실습하기

https://colab.research.google.com/

 

Google Colaboratory

 

colab.research.google.com

 

https://research.google.com/colaboratory/faq.html

 

Google Colab

Colaboratory 자주 묻는 질문(FAQ) 기본 사항 Colaboratory란 무엇인가요? 줄여서 'Colab'이라고도 하는 Colaboratory는 Google 리서치팀에서 개발한 제품입니다. Colab을 사용하면 누구나 브라우저를 통해 임의의

research.google.com

Colaboratory

자주 묻는 질문(FAQ)

기본 사항

Colaboratory란 무엇인가요?link

줄여서 'Colab'이라고도 하는 Colaboratory는 Google 리서치팀에서 개발한 제품입니다. Colab을 사용하면 누구나 브라우저를 통해 임의의 Python 코드를 작성하고 실행할 수 있습니다. Colab은 특히 머신러닝, 데이터 분석, 교육에 적합합니다. 더 기술적으로 설명하면 Colab은 호스팅된 Jupyter 노트북 서비스로, 설정하지 않고 사용 가능하며 GPU를 포함한 컴퓨팅 리소스를 무료로 사용할 수 있습니다.

정말 무료인가요?link

예. Colab은 무료로 사용할 수 있습니다.

믿기 어려울 정도로 좋아 보이는데요. 어떤 제한사항이 있나요?link

Colab 리소스는 보장되거나 무제한으로 제공되지는 않으며 사용량 한도가 달라지기도 합니다. 이런 방식으로 운영해야 Colab에서 리소스를 무료로 제공할 수 있기 때문입니다. 자세한 내용은 리소스 한도를 참고하세요.

향상된 리소스를 더 안정적으로 사용하는 데 관심이 있다면 Colab Pro가 적합할 수 있습니다.

Colab 리소스는 상호작용 사용 사례에 우선 할당됩니다. 일괄 연산, 다른 사용자에게 부정적인 영향을 줄 수 있는 작업, 정책을 우회하는 작업 등은 금지됩니다. 다음은 Colab 런타임에서 허용되지 않는 사항입니다.

  • Colab과의 상호작용 연산과 관련이 없는 파일 호스팅, 미디어 게재 또는 기타 웹 서비스 제공
  • 토렌트 다운로드 또는 P2P 파일 공유 참여
  • 원격 데스크톱 또는 SSH 사용
  • 원격 프록시 연결
  • 암호화폐 채굴
  • 서비스 거부 공격 실행
  • 비밀번호 크래킹
  • 여러 계정을 사용하여 액세스 제한이나 리소스 사용 제한 우회
  • 딥페이크 생성

유료 사용자를 위한 추가 제한사항은 여기에서 확인하시기 바랍니다.

Jupyter와 Colab 사이에는 어떤 차이점이 있나요?link

Jupyter는 Colab의 기반이 되어 주는 오픈소스 프로젝트입니다. Colab을 사용하면 아무것도 다운로드하거나 설치, 실행하지 않고도 Jupyter 메모장을 다른 사람과 공유할 수 있습니다.

Colab 사용하기

 

Google Colab Free GPU Tutorial

https://medium.com/deep-learning-turkey/google-colab-free-gpu-tutorial-e113627b9f5d

 

Google Colab Free GPU Tutorial

Now you can develop deep learning applications with Google Colaboratory -on the free Tesla K80 GPU- using Keras, Tensorflow and PyTorch.

medium.com

Hello! I will show you how to use Google Colab, Google’s free cloud service for AI developers. With Colab, you can develop deep learning applications on the GPU for free.

Thanks to KDnuggets!

I am happy to announce that this blog post was selected as KDnuggets Silver Blog for February 2018! Read this on KDnuggets.

What is Google Colab?

Google Colab is a free cloud service and now it supports free GPU!

You can;

  • improve your Python programming language coding skills.
  • develop deep learning applications using popular libraries such as Keras, TensorFlow, PyTorch, and OpenCV.

The most important feature that distinguishes Colab from other free cloud services is; Colab provides GPU and is totally free.

Detailed information about the service can be found on the faq page.

Getting Google Colab Ready to Use

Creating Folder on Google Drive

Since Colab is working on your own Google Drive, we first need to specify the folder we’ll work. I created a folder named “app” on my Google Drive. Of course, you can use a different name or choose the default Colab Notebooks folder instead of app folder.

I created an empty “app” folder

Creating New Colab Notebook

Create a new notebook via Right click > More > Colaboratory

Right click > More > Colaboratory

Rename notebook by means of clicking the file name.

Setting Free GPU

It is so simple to alter default hardware (CPU to GPU or vice versa); just follow Edit > Notebook settings or Runtime>Change runtime type and select GPU as Hardware accelerator.

Running Basic Python Codes with Google Colab

Now we can start using Google Colab.

I will run some Basic Data Types codes from Python Numpy Tutorial.

It works as expected :) If you do not know Python which is the most popular programming language for AI, I would recommend this simple and clean tutorial.

Running or Importing .py Files with Google Colab

Run these codes first in order to install the necessary libraries and perform authorization.

 

When you run the code above, you should see a result like this:

Click the link, copy verification code and paste it to text box.

After completion of the authorization process, you should see this:

Now you can reach you Google Drive with:

 

install Keras:

!pip install -q keras

upload mnist_cnn.py file to app folder which is located on your Google Drive.

mnist_cnn.py file

run the code below to train a simple convnet on the MNIST dataset.

!python3 "/content/drive/My Drive/app/mnist_cnn.py"

As you can see from the results, each epoch lasts only 11 seconds.

반응형

+ Recent posts