반응형
반응형

자주 묻는 질문

1) 내 컴퓨터에 어떤 GPU가 있는지 어떻게 알 수 있습니까?답변 :

Windows 컴퓨터 :

  1. 바탕 화면을 마우스 오른쪽 버튼으로 클릭
  2. 팝업 창에 "NVIDIA 제어판"또는 "NVIDIA 디스플레이"가 표시되면 NVIDIA GPU가있는 것입니다.
  3. 팝업 창에서 "NVIDIA 제어판"또는 "NVIDIA 디스플레이"를 클릭합니다.
  4. "그래픽 카드 정보"를보십시오.
  5. NVIDIA GPU의 이름이 표시됩니다.

Apple 컴퓨터 :

  1. "Apple 메뉴"를 클릭하십시오.
  2. "이 매킨토시에 관하여"를 클릭하십시오
  3. "추가 정보"를 클릭하십시오.
  4. 컨텐츠 목록에서 "그래픽 / 디스플레이"를 선택합니다.

2) 컴퓨터에 CUDA 지원 GPU가 있습니까?답변 : 위의 목록을 확인하여 GPU가 있는지 확인하십시오. 그렇다면 컴퓨터에 CUDA 가속 응용 프로그램을 활용할 수있는 최신 GPU가 있음을 의미합니다.3) 최신 드라이버가 있는지 어떻게 알 수 있습니까?답변 : www.nvidia.com/drivers로 이동하십시오.4) CUDA 지원 GPU 또는 시스템은 어떻게 구할 수 있습니까?답변 :
HPC 및 슈퍼 컴퓨팅 애플리케이션 용 Tesla는 www.nvidia.com/object/tesla_wtb.html
로 이동하십시오. 엔터테인먼트 용 GeForce는 www.nvidia.com/object/geforce_family.html
로 이동하십시오. 전문적인 시각화를위한 Quadro는 www. .nvidia.com / object / workstation_wheretobuy.html5) CUDA Toolkit을 다운로드하려면 어떻게해야합니까?답변 : CUDA 툴킷 다운로드로 이동 하십시오 .

 

tensorFlow - GPU 지원  www.tensorflow.org/install/gpu?hl=ko

 

GPU 지원  |  TensorFlow

참고: GPU 지원은 CUDA® 지원 카드가 있는 Ubuntu 및 Windows에 제공됩니다. TensorFlow GPU 지원에는 다양한 드라이버와 라이브러리가 필요합니다. 설치를 단순화하고 라이브러리 충돌을 방지하려면 GPU를

www.tensorflow.org

TensorFlow GPU 지원에는 다양한 드라이버와 라이브러리가 필요합니다. 설치를 단순화하고 라이브러리 충돌을 방지하려면 GPU를 지원하는 TensorFlow Docker 이미지를 사용하는 것이 좋습니다(Linux만 해당). 이 설정에는 NVIDIA® GPU 드라이버만 있으면 됩니다.

 

Download Drivers | NVIDIA

 

www.nvidia.com

Pip 패키지

사용 가능한 패키지, 시스템 요구사항 및 명령어는 pip 설치 가이드를 참고하세요. TensorFlow pip 패키지에는 CUDA® 지원 카드에 대한 GPU 지원이 포함됩니다.

 

pip install tensorflow

이 가이드에서는 최신 안정적인 TensorFlow 출시의 GPU 지원 및 설치 단계를 설명합니다.

이전 버전의 TensorFlow

1.15 이하 버전의 경우 CPU와 GPU 패키지가 다음과 같이 구분됩니다.

 

pip install tensorflow==1.15      # CPU
pip install tensorflow-gpu==1.15  # GPU

하드웨어 요구사항

다음과 같은 GPU 사용 기기가 지원됩니다.

  • CUDA® 아키텍처 3.5, 3.7, 5.2, 6.0, 6.1, 7.0 이상을 포함하는 NVIDIA® GPU 카드 CUDA® 지원 GPU 카드 목록을 참고하세요.
  • NVIDIA® Ampere GPU(CUDA 아키텍처 8.0) 이상이 적용된 시스템에서 커널은 PTX에서 JIT로 컴파일되며 TensorFlow는 시작하는 데 30분 이상 걸릴 수 있습니다. 이 오버헤드는 ‘export CUDA_CACHE_MAXSIZE=2147483648’를 사용하여 기본 JIT 캐시 크기를 늘려 첫 번째 시작으로 제한될 수 있습니다. 자세한 내용은 JIT 캐싱을 참고하세요.
  • 지원되지 않는 CUDA® 아키텍처를 사용하는 GPU의 경우 또는 PTX에서 JIT 컴파일을 방지하거나 다른 버전의 NVIDIA® 라이브러리를 사용하려면 Linux 소스에서 빌드 가이드를 참고하세요.
  • 패키지에는 지원되는 최신 CUDA® 아키텍처를 제외하고 PTX 코드가 포함되어 있지 않습니다. 따라서 CUDA_FORCE_PTX_JIT=1이 설정된 경우 이전 GPU에서 TensorFlow가 로드되지 않습니다. 자세한 내용은 애플리케이션 호환성을 참고하세요.

참고: '상태: 기기 커널 이미지가 잘못되었습니다'라는 오류 메시지는 TensorFlow 패키지에 아키텍처의 PTX가 포함되어 있지 않음을 나타냅니다. 소스에서 TensorFlow를 빌드하여 컴퓨팅 기능을 사용 설정할 수 있습니다.

소프트웨어 요구사항

다음 NVIDIA® 소프트웨어가 시스템에 설치되어 있어야 합니다.


Nvidia CUDA 지원 GPU 리스트

developer.nvidia.com/cuda-gpus

 

CUDA GPUs | NVIDIA Developer

HomeHigh Performance ComputingTools & EcosystemCUDA GPUs Recommended GPU for Developers NVIDIA TITAN RTX NVIDIA TITAN RTX is built for data science, AI research, content creation and general GPU development. Built on the Turing architecture, it features 46

developer.nvidia.com

 

반응형
반응형
A WebGL accelerated, browser based JavaScript library for training and deploying ML models.

https://js.tensorflow.org/

TensorFlow를 브라우저에서 실행시키는 공식 프로젝트입니다. WebGL를 이용한 JavaScript 라이브러리이며 기존 모델을 변환기를 통해 쉽게 브라우저에서 실행이 된다고 합니다.

#web #TensorFlow #JavaScript #AI #WebGL

...
반응형
반응형

[Chatbot] Python과 Tensorflow를 활용한 AI Chatbot 개발 및 실무 적용 chatbot


도입 

AI Chatbot 소개 

Chatbot Ecosystem 

Closed vs Open Domain 

Rule Based vs AI 

Chat IF Flow and Story Slot 

AI기반의 학습을 위한 Data 구성 방법 

Data를 구하는 법 / Train을 위한 Word Representation 

Data의 구성 / Data Augmentation(Intent, NER) 

자연어처리 위한 AI 적용 방안 

Intent (Char-CNN) / QnA (Seq2Seq) 

Named Entity Recognition (Bi-LSTM CRF) / Ontology (Graph DB) 

Chatbot Service를 위한 Architecture 구성 

Chatbot Architecture 

NLP Architecture 

Web Service Architecture 

Bot builder / Chatbot API 

Test Codes for Chatbot 

실무에서 발생하는 문제와 해결 Tips 

Ensemble and voting / Trigger / Synonym(N-Gram) 

Tone Generator / Parallel processing / Response Speed 

마무리 


[설명 코드] 

Text Augmentation / Slot Bot / QA Bot / Graph DB / Response Generator 




...

반응형
반응형

How to Make an Amazing Tensorflow Chatbot Easily


우리는 chatbot이이 년 동안 얼마나 깊은 학습 그들이 더 나은 방법했다 진화하는 방법에 대해 알아볼 것입니다. 그런 다음 우리는 파이썬에서 Tensorflow 기계 학습 라이브러리를 사용하여 우리 자신의 chatbot을 구축 할 수 있습니다. 

이 비디오에 대한 코드 및 코딩 문제는 여기에 있습니다 : 
은 https : //github.com/llSourcell/tensorf ...

이번주 게오르기의 경력 코드 : 
HTTPS : //github.com/petkofff/p_vs_np_c ...

믹의 러너 업 코드 : 이번 주 
HTTPS : //github.com/mickvanhulst/travS ...

: 우리의 여유 공간에 다른 마법사에 참여 
https://wizards.herokuapp.com

라이브 순서 시퀀스 chatbot 데모에 : 
HTTP : //neuralconvo.huggingface. 공동 /

chatbot이에 좀 더 유용한 자원 : 
HTTP : //www.wildml.com/2016/04/deep-le ... 
HTTP : //venturebeat.com/2016/08/01/how ... 
HTTP : / /web.stanford.edu/class/cs124/l ...

Tensorflow에 더 많은 자원 : 
HTTP : //lauragelston.ghost.io/speakeas ... 
HTTPS : //speakerdeck.com/inureyes/buil ...


#Tensorflow Chatbot Tensorflow Chatbot Demo by @Sirajology on Youtube

Overview

This is the full code for 'How to Make an Amazing Tensorflow Chatbot Easily' by @Sirajology on Youtube. In this demo code, we implement Tensorflows Sequence to Sequence model to train a chatbot on the Cornell Movie Dialogue dataset. After training for a few hours, the bot is able to hold a fun conversation.

Dependencies

Use pip to install any missing dependencies

Usage

To train the bot, edit the seq2seq.ini file so that mode is set to train like so

mode = train

then run the code like so

python execute.py

To test the bot during or after training, edit the seq2seq.ini file so that mode is set to test like so

mode = test

then run the code like so

python execute.py

...

반응형
반응형

tensorflow, macbook, anaconda 설치하고 실행해보기. 할때마다 새롭다. 


두번째 MACbook pro에서 설치해보기. 

영어가 짧아서 install tensorflow의 설치 방법이 4가지가 있다. 를  4개다 설치해보는 걸로 ㅋㅋ


anaconda를 설치해서 터미널로 실행해보는게 익숙한 느낌이다. PyCharm을 어떻게 셋팅해야 터미널에서 실행하는 것 처럼 하는지 아직은... 


anaconda에서 패키지 설치하고, 터미널에서도 설치하고 뒤죽박죽, 왠지 수박 겉 핡고 있는 느낌이랄까. 


https://tensorflowkorea.gitbooks.io/tensorflow-kr 를 기준으로 보고 셋팅하는게 나을듯하다. 


회사에서는 윈도우 PC로 PyCharm으로 돌리고 있다. 얕은 지식이 오락가락 ㅋㅋㅋ 맥북은 익숙하지도 않고. 


"깃허브의 주소는 https://github.com/tensorflowkorea/tensorflow-kr 입니다.

깃북의 주소는 https://tensorflowkorea.gitbooks.io/tensorflow-kr 입니다.

깃허브의 작업 방법에 대해서는 블로그 포스팅을 참고해 주세요."

라고 되어있으니 잘 참고해야지 




.

반응형
반응형

TensorFlow-Tutorials

Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorials.

Topics

Dependencies

  • TensorFlow 1.0 alpha
  • Numpy
  • matplotlib



# TensorFlow-Tutorials

[![Build Status](https://travis-ci.org/nlintz/TensorFlow-Tutorials.svg?branch=master)](https://travis-ci.org/nlintz/TensorFlow-Tutorials)

[![Codacy Badge](https://api.codacy.com/project/badge/grade/2d3ed69cdbec4249ab5c2f7e4286bb8f)](https://www.codacy.com/app/hunkim/TensorFlow-Tutorials)


Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of

Newmu's [Theano Tutorials](https://github.com/Newmu/Theano-Tutorials).


***Topics***

* [Simple Multiplication](00_multiply.py)

* [Linear Regression](01_linear_regression.py)

* [Logistic Regression](02_logistic_regression.py)

* [Feedforward Neural Network (Multilayer Perceptron)](03_net.py)

* [Deep Feedforward Neural Network (Multilayer Perceptron with 2 Hidden Layers O.o)](04_modern_net.py)

* [Convolutional Neural Network](05_convolutional_net.py)

* [Denoising Autoencoder](06_autoencoder.py)

* [Recurrent Neural Network (LSTM)](07_lstm.py)

* [Word2vec](08_word2vec.py)

* [TensorBoard](09_tensorboard.py)

* [Save and restore net](10_save_restore_net.py)

* [Generative Adversarial Network](11_gan.py)


***Dependencies***

* TensorFlow 1.0 alpha

* Numpy

* matplotlib



.

반응형

+ Recent posts