반응형
반응형

[python] 난수 10자리에서 영문 숫자 분포가 골고루 들어갈수있게

 

import random
import string

def generate_balanced_random_string(length=10):
    # 원하는 비율로 대문자, 소문자, 숫자 개수 설정
    num_uppercase = 4  # 대문자 4개
    num_lowercase = 3  # 소문자 3개
    num_digits = 3     # 숫자 3개

    # 각 문자 유형에서 원하는 만큼 선택
    uppercase_letters = random.choices(string.ascii_uppercase, k=num_uppercase)
    lowercase_letters = random.choices(string.ascii_lowercase, k=num_lowercase)
    digits = random.choices(string.digits, k=num_digits)

    # 모든 문자들을 합쳐서 무작위로 섞음
    random_string = uppercase_letters + lowercase_letters + digits
    random.shuffle(random_string)

    # 리스트를 문자열로 변환하여 반환
    return ''.join(random_string)

# 함수 호출
random_string = generate_balanced_random_string()
print(f"균형 잡힌 10자리 난수: {random_string}")
반응형
반응형

JavaScript is a versatile and powerful language that is essential for modern web development. Here are super hacks that will make you a more efficient and effective JavaScript developer, with detailed explanations and examples for each one.

1. Use `let` and `const` Instead of `var`

Problem: `var` has function scope which can lead to bugs and unpredictable behavior.

Solution: Use `let` and `const` which have block scope.

let count = 0;
const PI = 3.14;

Using `let` and `const` helps prevent scope-related bugs by ensuring variables are only accessible within the block they are defined.

2. Default Parameters

Problem: Functions can fail if arguments are not provided.

Solution: Use default parameters to set fallback values.

function greet(name = 'Guest') {
return `Hello, ${name}!`;
}
console.log(greet()); // "Hello, Guest!"

Default parameters ensure that a function has sensible defaults, preventing errors and making the code more robust.

3. Template Literals

Problem: String concatenation can be cumbersome and error-prone.

Solution: Use template literals for cleaner and more readable string interpolation.

const name = 'John';
const greeting = `Hello, ${name}!`;
console.log(greeting); // "Hello, John!"

Template literals make it easier to create strings with embedded expressions and multi-line strings.

4. Destructuring Assignment

Problem: Extracting values from objects and arrays can be verbose.

Solution: Use destructuring assignment to extract values more succinctly.

const user = { name: 'Jane', age: 25 };
const { name, age } = user;
console.log(name, age); // "Jane" 25

Destructuring assignment allows you to extract properties from objects and elements from arrays into distinct variables easily.

5. Arrow Functions

Problem: Traditional function expressions can be verbose and don’t bind `this` lexically.

Solution: Use arrow functions for shorter syntax and lexical `this`.

const add = (a, b) => a + b;
console.log(add(2, 3)); // 5

Arrow functions provide a concise syntax for function expressions and ensure that `this` is lexically bound.

6. Spread Operator

Problem: Combining arrays or objects can be cumbersome.

Solution: Use the spread operator to easily combine arrays and objects.

const arr1 = [1, 2, 3];
const arr2 = [4, 5, 6];
const combined = […arr1, …arr2];
console.log(combined); // [1, 2, 3, 4, 5, 6]

The spread operator allows you to spread the elements of an array or object into another array or object.

7. Rest Parameters

Problem: Handling a variable number of function arguments can be tricky.

Solution: Use rest parameters to capture all arguments in an array.

function sum(…args) {
return args.reduce((total, num) => total + num, 0);
}
console.log(sum(1, 2, 3, 4)); // 10

Rest parameters allow you to handle an indefinite number of arguments as an array, making your functions more flexible.

8. Short-Circuit Evaluation

Problem: Writing conditional statements can be verbose.

Solution: Use short-circuit evaluation to write concise conditions.

const isLoggedIn = true;
const user = isLoggedIn && { name: 'Jane', age: 25 };
console.log(user); // { name: 'Jane', age: 25 }

Short-circuit evaluation uses the logical `&&` and `||` operators to simplify conditional expressions.

9. Optional Chaining

Problem: Accessing deeply nested properties can lead to errors if any part of the chain is `null` or `undefined`.

Solution: Use optional chaining to safely access nested properties.

const user = { profile: { name: 'Jane' } };
const userName = user?.profile?.name;
console.log(userName); // "Jane"

Optional chaining allows you to safely access nested properties without having to explicitly check each level of the chain for `null` or `undefined`.

10. Nullish Coalescing

Problem: Using `||` to provide default values can give unexpected results if the value is `0` or `””`.

Solution: Use nullish coalescing (`??`) to provide default values only when `null` or `undefined`.

const user = { name: '', age: 0 };
const userName = user.name ?? 'Anonymous';
const userAge = user.age ?? 18;
console.log(userName); // ""
console.log(userAge); // 0

Nullish coalescing allows you to provide default values only when the left-hand side is `null` or `undefined`.

11. Object Property Shorthand

Problem: Assigning variables to object properties can be repetitive.

Solution: Use property shorthand to simplify object creation.

const name = 'Jane';
const age = 25;
const user = { name, age };
console.log(user); // { name: 'Jane', age: 25 }

Property shorthand allows you to omit the property name when it matches the variable name, making the code cleaner.

12. Dynamic Property Names

Problem: Creating objects with dynamic property names can be verbose.

Solution: Use computed property names to dynamically create object properties.

const propName = 'age';
const user = { name: 'Jane', [propName]: 25 };
console.log(user); // { name: 'Jane', age: 25 }

Computed property names allow you to create object properties dynamically, using the value of an expression as the property name.

13. Array `map()`, `filter()`, and `reduce()`

Problem: Iterating over arrays to transform, filter, or accumulate values can be repetitive.

Solution: Use `map()`, `filter()`, and `reduce()` for common array operations.

const numbers = [1, 2, 3, 4, 5];
const doubled = numbers.map(num => num * 2);
console.log(doubled); // [2, 4, 6, 8, 10]
const evens = numbers.filter(num => num % 2 === 0);
console.log(evens); // [2, 4]
const sum = numbers.reduce((total, num) => total + num, 0);
console.log(sum); // 15

These array methods provide a functional approach to transforming, filtering, and reducing arrays, making your code more expressive and concise.

14. String `includes()`, `startsWith()`, and `endsWith()`

Problem: Checking if a string contains, starts with, or ends with a substring can be verbose.

Solution: Use `includes()`, `startsWith()`, and `endsWith()` for simpler string checks.

const str = 'Hello, world!';
console.log(str.includes('world')); // true
console.log(str.startsWith('Hello')); // true
console.log(str.endsWith('!')); // true

These string methods provide a simple and readable way to check for the presence, start, or end of a substring.

15. Array and Object Destructuring in Function Parameters

Problem: Extracting values from arrays or objects passed as function parameters can be verbose.

Solution: Use destructuring in function parameters to directly extract values.

const user = { name: 'Jane', age: 25 };
function greet({ name, age }) {
return `Hello, ${name}! You are ${age} years old.`;
}
console.log(greet(user)); // "Hello, Jane! You are 25 years old."

Destructuring in function parameters allows you to directly extract values from objects or arrays passed to the function, making the code more concise and readable.

16. Default Values in Destructuring

Problem: Handling missing properties when destructuring objects can be cumbersome.

Solution: Use default values in destructuring to provide fallback values.

const user = { name: 'Jane' };
const { name, age = 18 } = user;
console.log(name); // "Jane"
console.log(age); // 18

Default values in destructuring allow you to provide fallback values for properties that may be missing, making your code more robust.

17. Object `assign()`

Problem: Cloning or merging objects can be verbose and error-prone.

Solution: Use `Object.assign()` to clone or merge objects.

const target = { a: 1 };
const source = { b: 2 };
const merged = Object.assign(target, source);
console.log(merged); // { a: 1, b: 2 }

`Object.assign()` allows you to clone or merge objects efficiently, reducing the need for manual copying.

18. Array `find()` and `findIndex()`

Problem: Finding an element or its index in an array can be cumbersome

with loops.

Solution: Use `find()` and `findIndex()` for more readable code.

const users = [
{ id: 1, name: 'Jane' },
{ id: 2, name: 'John' },
];
const user = users.find(u => u.id === 1);
console.log(user); // { id: 1, name: 'Jane' }
const index = users.findIndex(u => u.id === 1);
console.log(index); // 0

These array methods provide a simple way to find an element or its index based on a condition, improving code readability.

19. Array `some()` and `every()`

Problem: Checking if some or all elements in an array meet a condition can be verbose.

Solution: Use `some()` and `every()` for cleaner code.

const numbers = [1, 2, 3, 4, 5];
const hasEven = numbers.some(num => num % 2 === 0);
console.log(hasEven); // true
const allEven = numbers.every(num => num % 2 === 0);
console.log(allEven); // false

These array methods allow you to check if some or all elements in an array meet a condition in a concise way.

20. Array `flat()` and `flatMap()`

Problem: Flattening nested arrays or mapping and flattening arrays can be cumbersome.

Solution: Use `flat()` and `flatMap()` for more readable code.

const nested = [1, [2, [3, [4]]]];
const flat = nested.flat(2);
console.log(flat); // [1, 2, 3, [4]]
const mapped = [1, 2, 3].flatMap(x => [x, x * 2]);
console.log(mapped); // [1, 2, 2, 4, 3, 6]

These array methods provide a simple way to flatten nested arrays and to map and flatten in a single step.

21. Array `from()` and `of()`

Problem: Creating arrays from iterable objects or arguments can be verbose.

Solution: Use `Array.from()` and `Array.of()` for cleaner code.

const set = new Set([1, 2, 3]);
const arrFromSet = Array.from(set);
console.log(arrFromSet); // [1, 2, 3]
const arrOfNumbers = Array.of(1, 2, 3);
console.log(arrOfNumbers); // [1, 2, 3]

`Array.from()` allows you to create arrays from iterable objects, and `Array.of()` allows you to create arrays from a list of arguments.

22. Parameter Destructuring in Callbacks

Problem: Accessing properties of objects passed to callbacks can be verbose.

Solution: Use destructuring in callback parameters for cleaner code.

const users = [
{ id: 1, name: 'Jane' },
{ id: 2, name: 'John' },
];
users.forEach(({ id, name }) => {
console.log(`User ID: ${id}, User Name: ${name}`);
});

Destructuring in callback parameters allows you to directly access properties of objects passed to the callback, making the code more concise.

23. Optional Callback Functions

Problem: Handling optional callback functions can be cumbersome.

Solution: Use short-circuit evaluation to call optional callbacks.

function fetchData(url, callback) {
fetch(url)
.then(response => response.json())
.then(data => {
callback && callback(data);
});
}

Short-circuit evaluation allows you to call an optional callback function only if it is provided, making the code more robust.

24. Promisify Callbacks

Problem: Converting callback-based functions to promises can be cumbersome.

Solution: Use a utility function to promisify callbacks.

function promisify(fn) {
return function (…args) {
return new Promise((resolve, reject) => {
fn(…args, (err, result) => {
if (err) reject(err);
else resolve(result);
});
});
};
}
const readFile = promisify(require('fs').readFile);
readFile('path/to/file.txt', 'utf8')
.then(data => console.log(data))
.catch(err => console.error(err));

Promisifying allows you to convert callback-based functions to promises, making it easier to work with async/await syntax.

25. Async/Await for Synchronous-Like Code

Problem: Writing asynchronous code with promises can be verbose and hard to read.

Solution: Use async/await to write asynchronous code in a synchronous style.

async function fetchData(url) {
try {
const response = await fetch(url);
const data = await response.json();
console.log(data);
} catch (error) {
console.error('Error fetching data:', error);
}
}
fetchData('https://api.example.com/data');

Async/await provides a way to write asynchronous code that looks and behaves like synchronous code, improving readability and maintainability.

26. Chaining Promises

Problem: Handling multiple asynchronous operations sequentially can be cumbersome.

Solution: Chain promises to handle multiple asynchronous operations.

fetch('https://api.example.com/data')
.then(response => response.json())
.then(data => {
console.log('Data:', data);
return fetch('https://api.example.com/more-data');
})
.then(response => response.json())
.then(moreData => {
console.log('More Data:', moreData);
})
.catch(error => {
console.error('Error:', error);
});

Chaining promises allows you to handle multiple asynchronous operations sequentially, improving readability and maintainability.

27. Promise.all for Concurrent Execution

Problem: Handling multiple asynchronous operations concurrently can be challenging.

Solution: Use `Promise.all` to handle concurrent asynchronous operations.

const fetchData1 = fetch('https://api.example.com/data1').then(response => response.json());
const fetchData2 = fetch('https://api.example.com/data2').then(response => response.json());
Promise.all([fetchData1, fetchData2])
.then(([data1, data2]) => {
console.log('Data 1:', data1);
console.log('Data 2:', data2);
})
.catch(error => {
console.error('Error:', error);
});

`Promise.all` allows you to handle multiple asynchronous operations concurrently and proceed when all of them are completed.

28. Debounce Function

Problem: Frequent function calls, such as during a window resize event, can degrade performance.

Solution: Use a debounce function to limit the rate at which a function is executed.

function debounce(func, wait) {
let timeout;
return function (…args) {
clearTimeout(timeout);
timeout = setTimeout(() => func.apply(this, args), wait);
};
}
window.addEventListener('resize', debounce(() => {
console.log('Window resized');
}, 200));

A debounce function ensures that a function is only called after a certain period of inactivity, improving performance.

29. Throttle Function

Problem: Limiting the rate of function execution for events that fire frequently, like scroll or resize.

Solution: Use a throttle function to limit the execution rate of a function.

function throttle(func, limit) {
let lastFunc;
let lastRan;
return function (…args) {
if (!lastRan) {
func.apply(this, args);
lastRan = Date.now();
} else {
clearTimeout(lastFunc);
lastFunc = setTimeout(() => {
if (Date.now() - lastRan >= limit) {
func.apply(this, args);
lastRan = Date.now();
}
}, limit - (Date.now() - lastRan));
}
};
}
window.addEventListener('scroll', throttle(() => {
console.log('Window scrolled');
}, 200));

A throttle function ensures that a function is only called at most once in a specified period, improving performance for frequently firing events.

30. Deep Clone Objects

Problem: Cloning nested objects can be tricky and error-prone.

Solution: Use structured cloning or libraries like Lodash to deep clone objects.

const obj = { a: 1, b: { c: 2 } };
const deepClone = JSON.parse(JSON.stringify(obj));
console.log(deepClone); // { a: 1, b: { c: 2 } }

Deep cloning ensures that nested objects are copied by value, not by reference, preventing unintended modifications to the original object.

31. Memoization

Problem: Repeatedly calling expensive functions can degrade performance.

Solution: Use memoization to cache results of expensive function calls.

function memoize(func) {
const cache = new Map();
return function (…args) {
const key = JSON.stringify(args);
if (cache.has(key)) {
return cache.get(key);
}
const result = func.apply(this, args);
cache.set(key, result);
return result;
};
}
const expensiveFunction = memoize((num) => {
console.log('Computing…');
return num * 2;
});
console.log(expensiveFunction(2)); // "Comput
ing…" 4
console.log(expensiveFunction(2)); // 4

Memoization improves performance by caching results of expensive function calls and returning the cached result for subsequent calls with the same arguments.

32. Currying Functions

Problem: Creating functions with multiple parameters can be cumbersome.

Solution: Use currying to create functions with partially applied parameters.

function curry(func) {
return function curried(…args) {
if (args.length >= func.length) {
return func.apply(this, args);
}
return function (…nextArgs) {
return curried.apply(this, args.concat(nextArgs));
};
};
}
const sum = (a, b, c) => a + b + c;
const curriedSum = curry(sum);
console.log(curriedSum(1)(2)(3)); // 6
console.log(curriedSum(1, 2)(3)); // 6

Currying allows you to create functions that can be called with fewer arguments, returning a new function that accepts the remaining arguments.

33. Partial Application

Problem: Calling functions with repetitive arguments can be tedious.

Solution: Use partial application to pre-apply some arguments to a function.

function partial(func, …presetArgs) {
return function (…laterArgs) {
return func(…presetArgs, …laterArgs);
};
}
const multiply = (a, b, c) => a * b * c;
const double = partial(multiply, 2);
console.log(double(3, 4)); // 24

Partial application allows you to create new functions by pre-applying some arguments, making your code more flexible and reusable.

34. Function Composition

Problem: Combining multiple functions into a single operation can be cumbersome.

Solution: Use function composition to combine multiple functions.

const compose = (…funcs) => (arg) =>
funcs.reduceRight((prev, fn) => fn(prev), arg);
const add = (x) => x + 1;
const multiply = (x) => x * 2;
const addThenMultiply = compose(multiply, add);
console.log(addThenMultiply(5)); // 12

Function composition allows you to create a new function by combining multiple functions, making your code more modular and reusable.

35. Function Pipelining

Problem: Applying a series of functions to a value can be verbose.

Solution: Use function pipelining to apply a series of functions in sequence.

const pipe = (…funcs) => (arg) =>
funcs.reduce((prev, fn) => fn(prev), arg);
const add = (x) => x + 1;
const multiply = (x) => x * 2;
const addThenMultiply = pipe(add, multiply);
console.log(addThenMultiply(5)); // 12

Function pipelining allows you to apply a series of functions to a value in sequence, improving code readability and maintainability.

36. Self-Invoking Functions

Problem: Executing a function immediately upon definition can be cumbersome.

Solution: Use an Immediately Invoked Function Expression (IIFE).

(function () {
console.log('This runs immediately!');
})();

IIFEs allow you to execute a function immediately upon definition, useful for creating isolated scopes and avoiding polluting the global namespace.

37. Avoid Global Variables

Problem: Global variables can lead to conflicts and unintended side effects.

Solution: Use local variables and modules to avoid polluting the global namespace.

// Using local variables
function doSomething() {
let localVariable = 'This is local';
console.log(localVariable);
}
// Using modules
const myModule = (function () {
let privateVariable = 'This is private';
return {
publicMethod() {
console.log(privateVariable);
},
};
})();
myModule.publicMethod(); // "This is private"

Avoiding global variables helps prevent conflicts and unintended side effects, making your code more modular and maintainable.

38. Encapsulation with Closures

Problem: Exposing internal details of a function can lead to misuse.

Solution: Use closures to encapsulate internal details.

function createCounter() {
let count = 0;
return {
increment() {
count++;
return count;
},
decrement() {
count - ;
return count;
},
};
}
const counter = createCounter();
console.log(counter.increment()); // 1
console.log(counter.increment()); // 2
console.log(counter.decrement()); // 1

Closures allow you to encapsulate internal details and expose only the necessary functionality, improving code security and maintainability.

39. Module Pattern

Problem: Organizing code into reusable modules can be challenging.

Solution: Use the module pattern to create reusable and encapsulated code.

const myModule = (function () {
let privateVariable = 'This is private';
function privateMethod() {
console.log(privateVariable);
}
return {
publicMethod() {
privateMethod();
},
};
})();
myModule.publicMethod(); // "This is private"

The module pattern allows you to create reusable and encapsulated code, improving code organization and maintainability.

40. Singleton Pattern

Problem: Ensuring only one instance of a class is created can be challenging.

Solution: Use the singleton pattern to create a single instance.

const singleton = (function () {
let instance;
function createInstance() {
return {
name: 'Singleton Instance',
};
}
return {
getInstance() {
if (!instance) {
instance = createInstance();
}
return instance;
},
};
})();
const instance1 = singleton.getInstance();
const instance2 = singleton.getInstance();
console.log(instance1 === instance2); // true

The singleton pattern ensures that only one instance of a class is created, useful for managing shared resources or configurations.

41. Factory Pattern

Problem: Creating objects with complex initialization can be cumbersome.

Solution: Use the factory pattern to create objects.

function createUser(name, role) {
return {
name,
role,
sayHello() {
console.log(`Hello, my name is ${this.name} and I am a ${this.role}`);
},
};
}
const admin = createUser('Alice', 'admin');
const user = createUser('Bob', 'user');
admin.sayHello(); // "Hello, my name is Alice and I am an admin"
user.sayHello(); // "Hello, my name is Bob and I am a user"

The factory pattern allows you to create objects with complex initialization in a flexible and reusable way.

42. Observer Pattern

Problem: Managing state changes and notifying multiple components can be challenging.

Solution: Use the observer pattern to manage state changes and notify observers.

function Subject() {
this.observers = [];
}
Subject.prototype = {
subscribe(observer) {
this.observers.push(observer);
},
unsubscribe(observer) {
this.observers = this.observers.filter((obs) => obs !== observer);
},
notify(data) {
this.observers.forEach((observer) => observer.update(data));
},
};
function Observer(name) {
this.name = name;
}
Observer.prototype.update = function (data) {
console.log(`${this.name} received data: ${data}`);
};
const subject = new Subject();
const observer1 = new Observer('Observer 1');
const observer2 = new Observer('Observer 2');
subject.subscribe(observer1);
subject.subscribe(observer2);
subject.notify('New data available'); // "Observer 1 received data: New data available" "Observer 2 received data: New data available"

The observer pattern allows you to manage state changes and notify multiple observers, improving code organization and maintainability.

43. Event Delegation

Problem: Adding event listeners to multiple elements can degrade performance.

Solution: Use event delegation to manage events efficiently.

document.getElementById('parent').addEventListener('click', (event) => {
if (event.target && event.target.matches('button.className')) {
console.log('Button clicked:', event.target.textContent);
}
});

Event delegation allows you to manage events efficiently by adding a single event listener to a common parent element and handling events for multiple child elements.

44. Avoid Using `eval()`

Problem: Using `eval()` can lead to security vulnerabilities and performance issues.

Solution: Avoid using `eval()` and use safer alternatives.

// Avoid
const code = 'console.log("Hello, world!")';
eval(code); // "Hello, world!"
// Use safer alternatives
const func = new Function('console.log("Hello, world!")');
func(); // "Hello, world!"

Avoiding `eval()` helps prevent security vulnerabilities and performance issues, making your code more secure and efficient.

45. Using `for…of` for Iteration

Problem: Iterating over arrays with `for…in` can be error-prone.

Solution: Use `for…of` to iterate over arrays and other iterable objects.

const arr = [1, 2, 3, 4, 5];
for (const value of arr) {
console.log(value);
}
// 1
// 2
// 3
// 4
// 5

`for…of` provides a simple and safe way

 

https://blog.devgenius.io/45-javascript-super-hacks-every-developer-should-know-92aecfb33ee8

반응형
반응형

 

네이버 날씨

 

https://weather.naver.com/map/14110107?cctv=true

 

네이버 날씨 지도

전국의 모든 기상 정보부터 위성, 레이더, CCTV 영상까지 한눈에 확인하세요.

weather.naver.com

 

반응형
반응형

처음 한글을 배우듯
느낌을 몸으로 찾아보고
말로 하나씩 말해보기 시작했다.
내 몸이 말하는 신호에 이유를 찾다 보니
점점 나라는 사람과 가까워지기 시작했다.
공허한 느낌에는 존재감이 필요했고, 맥이
풀리는 느낌에는 안전을 중요하게 여기는
마음이 있었다. 이런 미세한 변화가 벅차게
다가왔다. 그리고 나의 느낌 세포들이
살아나니 다른 사람들의 느낌도
헤아려볼 여유가 생기기
시작했다.


- 김숙희 외의 《마음이 길이 된다》 중에서 -


* 몸에는 60조 개의
세포가 있다 합니다. 하나하나의 세포는
저마다 말을 합니다. 온갖 신호를 보냅니다.
생명과 연결된 정보와 에너지와 시스템이 말을
걸며 보내는 신호입니다. 하나의 세포는 이웃
세포와 정밀하게 연결돼 전체 몸을 위해
움직입니다. 자칫 몸이 말하는 신호를
놓치면 전체 움직임이 흐트러지고
여유도 리듬도 잃게 됩니다.  

반응형

'아침편지' 카테고리의 다른 글

남편에게 화난 이유  (0) 2024.10.23
식사 때 지켜야 할 수칙  (0) 2024.10.22
한강  (0) 2024.10.21
혼은 어디로 갈까  (0) 2024.10.18
지옥 같은 고통은 왜 올까  (0) 2024.10.17
반응형

한강

 

아름답고 슬픈 희망의 젖줄

 

반응형

'아침편지' 카테고리의 다른 글

식사 때 지켜야 할 수칙  (0) 2024.10.22
몸이 말하는 신호  (0) 2024.10.21
혼은 어디로 갈까  (0) 2024.10.18
지옥 같은 고통은 왜 올까  (0) 2024.10.17
파종과 추수, 거대한 순환에 대하여  (0) 2024.10.16
반응형

[python] 랜덤 난수 생성해서 엑셀에 저장하기 

"""   
랜덤으로 생성된 문자열을 엑셀 파일에 저장
"""
import random
import string
import os
from captcha.image import ImageCaptcha
import pandas as pd  # pandas 라이브러리를 사용하여 엑셀 파일 저장

# 2023-05-26 ngio add
# 파이썬 컴파일 경로가 달라서 현재 폴더의 이미지를 호출하지 못할때 작업디렉토리를 변경한다. 
import os
from pathlib import Path
# src 상위 폴더를 실행폴더로 지정하려고 한다.
###real_path = Path(__file__).parent.parent
real_path = Path(__file__).parent
print(real_path)
#작업 디렉토리 변경
os.chdir(real_path) 


# 랜덤 6자리 문자열 생성 함수
def generate_random_string(length=6):
    # string.ascii_uppercase: 영문 대문자 A-Z만을 포함합니다.
    # string.ascii_lowercase: 영문 소문자 a-z만을 포함합니다.
    # characters = string.ascii_letters + string.digits  # 영문 대소문자 + 숫자
    characters = string.ascii_uppercase + string.digits
    return ''.join(random.choices(characters, k=length)) 

# 초기 데이터
data = [['QWE123', 10001], ['RTY456', 10002]]

# 반복문을 통해 데이터 추가
for i in range(1, 10):
    #letter = chr(64 + i)  # A: 65 -> B: 66 -> C: 67 -> ...
    letter = generate_random_string();
    data.append([letter, (10002 + i)])

print(data)
print("\n\n")

# 중복 값 확인 함수
def check_duplicates(data):
    # 리스트를 튜플로 변환 (리스트는 set에 직접 넣을 수 없기 때문)
    data_as_tuples = [tuple(item) for item in data]
    
    # 집합의 크기와 리스트의 크기를 비교
    if len(data_as_tuples) != len(set(data_as_tuples)):
        print("중복된 값이 있습니다.")
    else:
        print("중복된 값이 없습니다.")

# 함수 호출
check_duplicates(data)
print("\n\n")


# DataFrame으로 변환
df = pd.DataFrame(data, columns=['random_word', 'word_index'])

# 결과 출력
print(df)
print("\n\n")
반응형

+ Recent posts