반응형
반응형

나는 문제가 어려울수록 경쟁이 줄어든다는 진리를 깨달았다.
일이 쉬울 때는 언제나 많은 사람들이 달려든다.
그러나 일이 어렵고 복잡할 때는 얼씬거리는 사람이 아무도 없다.
그런데 이 어렵고 복잡한 일을 누군가가 말끔하게 해치우면
그 사람은 독보적인 위치에 올라설 수 있다.
- 스티븐 슈워츠만 블랙스톤 회장, ‘투자의 모험’에서


좋아 보이고 쉬워 보이는 일에는 누구나 관심을 갖고 뛰어들게 됩니다.
결과적으로 경쟁은 더 치열해지고 과실은 더 작아집니다.
남들이 보지 못하는 것, 어려워보여서 뛰어들 엄두를 내지 못하는 것들을 찾아내
좌고우면하지 않고 우보만리로 걸어가다 보면 결국 독점적 과실을 향유할 수 있습니다.

반응형
반응형

과거의 습성을
마냥 고수할 게 아니라
합리적인 교류가 이뤄지도록 노력해야 한다.
노력이라는 건 상대방에게 신뢰를 갖고 자신을
표현해 보는 것이다. 상대방이 자신의 이야기를
들어 주지 않을 것이라고 미리 판단하고 울어
버리거나 강경하게 고집을 피우는 것도
어느 면에서는 죄를 짓는 것이다.
미리 상대방을 부정적으로
단정 짓는 것이기
때문이다.


- 장성숙의《불행한 관계 걷어차기》중에서 -


* 사람 관계에서
매우 조심해야 할 것이 있습니다.
상대방을 적대시하거나 부정적으로 보는 것입니다.
그 순간부터 신뢰는 깨져 버립니다. 신뢰는 어느 한쪽만
일방적으로 믿는다 해서 이뤄지는 것이 아닙니다.
서로 믿어야 합니다. 가장 쉬운 것은 내가 먼저
상대를 믿어주는 것입니다. 그러면 상대방도
나를 믿습니다. 서로 경청하게 되고
신뢰의 문이 열립니다.

반응형

'아침편지' 카테고리의 다른 글

존재의 중심  (0) 2021.02.08
더 이상 버틸 힘이 없을 때  (0) 2021.02.05
공부하는 엄마  (0) 2021.02.03
더 평온한 세상  (0) 2021.02.02
몸은 얼굴부터 썩는다  (0) 2021.02.01
반응형

딥러닝 자연어처리 - RNN에서 BERT까지

 

< 딥러닝 자연어처리 - RNN에서 BERT까지 >
- RNN/LSTM
- Seq2Seq
- 어텐션
- 트랜스포머
- BERT

< 챗봇 개발자 모임 >
- https://www.facebook.com/groups/ChatbotDevKR/

.

반응형
반응형

인공지능(AI) 언어모델 ‘BERT(버트)'는 무엇인가

github.com/google-research/bert

 

google-research/bert

TensorFlow code and pre-trained models for BERT. Contribute to google-research/bert development by creating an account on GitHub.

github.com

지난해 11월, 구글이 공개한 인공지능(AI) 언어모델 ‘BERT(이하 버트, Bidirectional Encoder Representations from Transformers)’는 일부 성능 평가에서 인간보다 더 높은 정확도를 보이며 2018년 말 현재, 자연 언어 처리(NLP) AI의 최첨단 딥러닝 모델이다. 

또한 BERT는 언어표현 사전학습의 새로운 방법으로 그 의미는 '큰 텍스트 코퍼스(Wikipedia와 같은)'를 이용하여 범용목적의 '언어 이해'(language understanding)' 모델을 훈련시키는 것과 그 모델에 관심 있는 실제의 자연 언어 처리 태스크(질문·응답 등)에 적용하는 것이다.

특히 BERT는 종래보다 우수한 성능을 발휘한다. BERT는 자연언어 처리 태스크를 교육 없이 양방향으로 사전학습하는 첫 시스템이기 때문이다. 교육 없음이란 BERT가 보통의 텍스트 코퍼스만을 이용해 훈련되고 있다는 것을 의미한다. 이것은 웹(Web) 상에서 막대한 양의 보통 텍스트 데이터가 여러 언어로 이용 가능하기 때문에 중요한 특징으로 꼽는다.

사전학습을 마친 특징 표현은 문맥에 '의존하는 방법'와 '의존하지 않는 방법'의 어느 방법도 있을 수 있다. 또 문맥에 의존하는 특징적인 표현은 단방향인 경우와 혹은 양방향일 경우가 있다. word2vec나 GloVe와 같이 문맥에 의존하지 않는 모델에서는, 어휘에 포함되는 각 단어마다 '단어 삽입(word embedding)'이라는 특징 표현을 생성한다. 따라서, 'bank'라는 단어는 'bank deposit' 또는 'river bank'과 같은 특징으로 표현되며, 문맥에 의존하는 모델에서는 문장에 포함되는 다른 단어를 바탕으로 각 단어의 특징을 표현 생성한다.

 

 

 

BERT는 문맥에 의존하는 특징적인 표현의 전학습을 실시하는 대응을 바탕으로 구축되었다. 그러한 대응은 Semi-supervised Sequence Learning, Generative Pre-Training, ELMo, 및 ULMFit를 포함하며, 대응에 의한 모델은 모두 단방향 혹은 얕은 양방향이다. 각 단어는 단지 그 왼쪽(혹은 오른쪽)에 존재하는 단어에 의해서만 문맥의 고려가 되는 것을 의미한다.

예를 들어, I made a bank deposit라는 문장은 bank의 단방향 특징표현은 단지 I made a만에 의해 결정되며, deposit은 고려되지 않는다. 몇개의 이전의 대응에서는 분리한 좌문맥모델과 우문맥모델에 의한 특징표현을 조합하고 있었지만, 이것은 얕은 양방향 방법이다. BERT는 bank를 왼쪽과 오른쪽 양쪽의 문맥 I made a ... deposit을 딥 뉴럴 네트워크(Deposit)의 최하층에서 이용해 특징을 표현하기 때문에 BERT는 '딥 양방향(deeply bidirectional)'이다.

BERT는 간단한 접근법을 사용한다. 입력에서 단어의 15%를 숨기고 딥 양방향 Transformer encoder(관련 논문다운)를 통해 전체 시퀀스를 실행한 다음 마스크 된 단어만 예측한다. 예를 들어, 아래와 같이 문간의 관계를 학습하기 위해서는 임의의 단언어 코퍼스에서 생성 가능한 심플한 작업을 이용하여 학습한다. A와 B의 두 개의 글을 받았을 때 B가 A의 뒤에 오는 실제 문장인지, 코퍼스 안의 랜덤한 글인지를 판정하는 태스크이다.
 

또한 큰 모델(12층에서 24층의 Transformer)을 큰 코퍼스(Wikipedia + BookCorpus)로 긴 시간을 들여(100만 갱신 스텝) 훈련했다. 그것이 BERT이며, 이용은 '사전학습'과 '전이학습'의 2단계로 구분된다.

사전학습(pre-training)은 상당히 고가로 4에서 16개의 Cloud TPU로 4일(12 층의 Transformer 모델의 경우 4개의 TPU를 사용하여 4일, 24층 Transformer 모델의 경우 16개의 TPU를 사용하여 4일이라는 의미) 각 언어마다 1회만의 순서이다. 자연 언어 처리 개발자는 처음부터 자신의 모델을 사전 학습할 필요가 없다.

전이학습(Fine-tuning)은 저렴하며, 논문(아래 참조)과 똑같은 사전학습이 끝난 모델을 사용하여 하나의 Cloud TPU를 이용, 1시간 GPU를 사용하면 2, 3시간만에 재현할 수 있다. 예를 들면 SQuAD는 하나의 Cloud TPU를 이용 30분으로 하나의 시스템으로서는 최첨단(state-of-the-art)인 91.0%의 Dev F1을 달성할 수 있다.

이밖에 BERT의 또 다른 중요한 측면은 많은 종류의 자연 언어 처치 태스크로 인해 매우 쉽게 채택될 수 있다. 논문 중에서 문장 수준 (SST-2 등), 문장 쌍 수준(MultiNLI 등), 단어 수준(NER 등) 스팬 레벨 2 (SQuAD 등)의 태스크에 대해서 거의 태스크 특유의 변경을 실시하는 일 없이, 최첨단 결과를 얻을 수 있는 것을 나타내고 있다.

참고) 'BERT: 언어 이해를 위한 양방향 트랜스포머 사전 학습(BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding)' 논문(다운받기), BERT Google-research의 깃허브(GitHub) (바로가기) 
 

www.aitimes.kr/news/articleView.html?idxno=13117

 

인공지능(AI) 언어모델 ‘BERT(버트)'는 무엇인가 - 인공지능신문

지난해 11월, 구글이 공개한 인공지능(AI) 언어모델 ‘BERT(이하 버트, Bidirectional Encoder Representations from Transformers)’는 일부 성능 평가에서 인간보다 더 높은 정확도를 보이며 2018년 말 현재, ...

www.aitimes.kr

ebbnflow.tistory.com/151

 

[BERT] BERT에 대해 쉽게 알아보기1 - BERT는 무엇인가, 동작 구조

● 언어모델 BERT BERT : Pre-training of Deep Bidirectional Trnasformers for Language Understanding 구글에서 개발한 NLP(자연어처리) 사전 훈련 기술이며, 특정 분야에 국한된 기술이 아니라 모든 자연어..

ebbnflow.tistory.com

vhrehfdl.tistory.com/15

 

슬기로운 NLP 생활 [13] BERT

이전 글 [1] 자연어처리란? [2] Classification Task [3] POS Tagging [4] Stemming, Lemmatizing [5] 형태소 분석기 [6] One-Hot Encoding, Bag Of Word [7] TF-IDF [8] Word2vec [9] Fasttext [10] Glove [11] E..

vhrehfdl.tistory.com

 

반응형
반응형

도토리·일촌의 추억, 싸이월드 부활한다

경영난으로 폐업 위기에 몰렸던 국내 1세대 소셜미디어 싸이월드가 다음 달 서비스를 재개한다. 2일 IT 업계에 따르면 신설 법인 싸이월드Z는 지난달 말 전제완 싸이월드 대표로부터 싸이월드 서비스 운영권을 인수하는 계약을 체결했다. 싸이월드Z는 엔터테인먼트 회사 스카이이엔엠 등 5개 기업이 컨소시엄을 구성해 설립한 법인이다.

 

싸이월드Z는 이르면 3월 중 기존 싸이월드 PC 서비스를 정상화할 계획이다. 회사 관계자는 “많은 사용자가 접속할 가능성이 높아 내부 베타 서비스를 거쳐 정식 오픈할 예정”이라고 설명했다. 상반기 중에는 모바일 앱도 출시할 예정이다.

전제완 대표는 기존 직원들에게 체불한 임금 10억원을 컨소시엄이 해결하는 조건으로 싸이월드를 넘긴 것으로 알려졌다. 전 대표는 직원 27명의 임금·퇴직금 4억7000만원 상당을 체불한 혐의로 기소돼 지난해 11월 1심에서 징역 1년 6개월을 선고받았다. 싸이월드는 지난해 5월 매출과 영업 활동이 장기간 포착되지 않아 관할 세무서에 의해 폐업 처리됐다.

반응형
반응형

기업은 사람이다.
기업(企業)은 문자 그대로 업(業)을 기획(企劃)하는 것이다.
그런데 세상의 많은 사람들은 사람이 기업을 경영한다는
이 소박한 원리를 잊고 있는 것 같다.
나는 내 일생을 통해서
약 80%는 인재를 모으고 기르고 육성시키는 데 시간을 보냈다.
- 삼성 이병철 회장, 1980년 7월 3일 전경련 강연에서


잭 웰치 회장도 자신의 시간 중
75%를 사람 관련된 일에 투자했다고 고백하고 있습니다.
오늘날 삼성과 GE의 성공은
바로 이와 같은 인재제일경영의 자연스런 결과라 볼 수 있습니다.
가장 중요한 자원 중 하나인 최고경영자의 시간과 관심을
역시 가장 중요한 자원인 인재에 집중 투자하는 것은
‘당연한 일이지만, 제대로 실행하는 사람이 많지 않은 일’입니다.

반응형

+ Recent posts