반응형
반응형

Awesome-Korean-NLP


Github https://github.com/datanada/Awesome-Korean-NLP


참고 : http://konlpy.org/en/v0.4.4/



A curated list of Natural Language Processing (NLP) of

  • NLP of Korean Text
  • NLP information written in Korean.

Feel free to contribute! or blab it here

Maintainer: Jaemin Cho

Index

  1. Tools
  2. Dataset
  3. Blogs / Slides / Researchers
  4. Papers
  5. Lectures
  6. Journals / Conferences / Institutes / Events
  7. Online Communities
  8. How to contribute

1. Tools

(Korean-specific tools are listed ahead of language-agnostic tools.)

1.1. Morpheme/형태소 분석기 + Part of Speech(PoS)/품사 Tagger

  • Hannanum (한나눔) (Java, C) [link]
    • KoNLPy (Python) [link]
  • Kkma (꼬꼬마) (Java) [link] [paper]
    • KoNLPy (Python) [link]
  • Komoran (Java) [link]
    • KoNLPy (Python) [link]
  • Mecab-ko (C++) [link]
    • KoNLPy (Python) [link]
  • Twitter (Scala, Java) [link]
    • KoNLPy (Python) [link]
    • .NET, Node.js, Python, Ruby, Elasitc Search bindings
  • dparser (REST API) [link]
  • UTagger [link]
  • Arirang (Lucence, Java) [link]
  • Rouzeta [link] [slide] [video]
  • seunjeon (Scala, Java) [link]
  • RHINO (라이노) [link]
  • KTS [paper]
  • 깜짝새 [link]

1.2. Named Entity(NE) Tagger / 개체명 인식기

1.3. Spell Checker / 맞춤법 검사기

  • PNU Spell Checker [link]
  • Naver Spell Checker [link]
  • Daum Spell Checker [link]
  • hunspell-ko [link]

1.4. Syntax Parser / 구문 분석기

  • dparser (REST API) [link]
  • NLP HUB (Java) [link]

1.5. Sentimental Analysis / 감정 분석기

1.6. Translator / 번역기

1.7. Packages

1.8. Others / 기타

  • Hangulpy (Python) [link]
    • 자동 조사/접미사 첨부, 자모 분해 및 결합
  • Hangulize (Python) [link]
    • 외래어 한글 변환
  • Hanja (Python) [link]
    • 한자 한글 변환
  • kroman [link]
  • hangul (Perl) [link]
    • Hangul Romanization
  • textrankr (Python) [link] [demo]
    • TextRank 기반 한국어 문서 요약
  • 한국어 Word2Vec [demo] [paper]
    • 한국어 Word2Vec의 analogy test 데모
  • 나쁜 단어 사전 [link]
    • crowdsourced dic about badword in korean

2. Dataset

  • Sejong Corpus [link]
  • KAIST Corpus [link]
  • Yonsei Univ. Corpus
  • Korea Univ. Corpus
  • Ulsan Univ. Corpus [link]
  • Wikipedia Dump [link] [Extractor]
  • NamuWiki Dump [link] [Extractor]
  • Naver News Archive [link]
  • Chosun Archive [link]
  • Naver sentiment movie corpus [link]
  • sci-news-sum-kr-50 [link]

3. Blogs / Slides / Researchers

3.1. Blogs

  • dsindex's blog [link]
  • 엑사젠, "혼자 힘으로 한국어 챗봇 개발하기" [link]
  • Beomsu Kim, "word2vec 관련 이론 정리" [link]
  • CPUU, "Google 자연어 처리 오픈소스 SyntaxNet 공개" (Korean tranlsation of Google blog) [link]
  • theeluwin, "python-crfsuite를 사용해서 한국어 자동 띄어쓰기를 학습해보자" [link]
  • Jaesoo Lim, "한국어 형태소 분석기 동향" [link]

3.2. Slides

  • Lucy Park, "한국어와 NLTK, Gensim의 만남" (PyCon APAC 2015) [link]
  • Jeongkyu Shin, "Building AI Chat bot using Python 3 & TensorFlow" (PyCon APAC 2016) [link]
  • Changki Lee, "RNN & NLP Application" (Kangwon Univ. Machine Learning course) [link]
  • Kyunghoon Kim, "뉴스를 재미있게 만드는 방법; 뉴스잼" (PyCon APAC 2016) [link]
  • Hongjoo Lee, "Python 으로 19대 국회 뽀개기" (PyCon APAC 2016) [link]
  • Kyumin Choi,"word2vec이 추천시스템을 만났을 때" (PyCon APAC 2015) [link]
  • 進藤裕之 (translated by Hongbae Kim), "딥러닝을 이용한 자연어처리의 연구동향" [link]
  • Hongbae Kim, "머신러닝의 자연어 처리기술(I)" [link]
  • Changki Lee, "자연어처리를 위한 기계학습 소개" [link]
  • Taeil Kim, Daeneung Son, "기계 번역 모델 기반 질의 교정 시스템" (Naver DEVIEW 2015) [link]

4. Papers

4.1. Korean

  • 김동준, 이연수, 장정선, 임해창, 고려대학교, (주)엔씨소프트, "한국어 대화 화행 분류를 위한 어휘 자질의 임베딩(2015년 동계학술발표회 논문집)" [paper] link dead

4.2. English

5. Lectures

5.1. Korean Lectures

  • Kangwon Univ. 자연언어처리 [link]
  • 데이터 사이언스 스쿨 [link]
  • SNU Data Mining / Business Analytics [link]

5.2. English Lectures

  • Stanford CS224n: Natural Language Processing [link] [YouTube]
  • Stanford CS224d: Deep Learning for Natural Language Processing [link] [YouTube]
  • NLTK with Python 3 for NLP (by Sentdex) [YouTube]
  • LDA Topic Models [link]

6. Conferences / Institutes / Events

6.1. Conferences

  • 한글 및 한국어 정보처리 학술대회 [link]
  • KIPS (한국정보처리학회) [link]
  • 한국음성학회 학술대회 [link]

6.2. Institutes

  • 언어공학연구회 [link]
    • 한글 및 한국어 정보처리 학술대회 (Since 1989, 매년 개최) [link]
    • 국어 정보 처리 시스템 경진대회 (Since 2010, 매년 개최, 주최: 문화체육관광부 및 국립국어원) [link]
    • 자연언어처리 튜토리얼 (비정기적) [link]
    • 자연어처리 및 정보검색 워크샵 [link]
  • 한국음성학회 [link]

6.3. Events / Contests

  • 국어 정보 처리 시스템 경진 대회 [link]

7. Online Communities

  • Tensorflow KR (Facebook Group) [link]
  • AI Korea (Facebook Group) [link]
  • Bot Group (Facebook Group) [link]
  • 바벨피쉬 (Facebook Group) [link]
  • Reddit Machine Learning Top posts [link]

8. How to contribute

  1. Fork this Repository, by clicking on "fork" icon at the top right corner.

  2. Get the link for the forked repo, by clicking on the green button on your page. something like, "https://github.com/[username]/Awesome-Korean-NLP.git"

  3. On your local machine, "git clone https://github.com/[username]/Awesome-Korean-NLP.git"

  4. "cd Awesome-Korean-NLP"

  5. open "README.md" with your favorite text editor.

  6. Edit.

  7. git commit -a -m "added section 8: emoticons"

  8. git push, and verify on your fork

  9. goto https://github.com/datanada/Awesome-Korean-NLP and create pull request.

  10. "compare across forks" with base: datanada/Awesome.. and head: [username]/Awesome..

[beginners guide]





.........

반응형
반응형

[MAC] 맥북에서 ssh 원격접속 하기- like Putty


윈도우에서는 Putty로 잘 접속했는데, 맥에선 해본적이 없어서. 


기본적으로 터미널이 있다. 

터미널에서 ssh 입력하고 엔터. 하니 설명이 나온다. 


>ssh root@~~ ip~~ -p 포트번호 


이렇게 입력하면 바로 접속. 비밀번호 입력하면 끝. 

이렇게 간단한 것을. 

반응형
반응형

[MAC] 맥북에서 윈도우서버 원격접속 하기 앱. 


Open the Mac App Store to buy and download apps.


https://itunes.apple.com/us/app/microsoft-remote-desktop/id715768417?mt=12






반응형
반응형

챗봇 시작해보기   https://www.slideshare.net/ssusercf5d12/ss-69518853


Python 으로 Slackbot 개발하기   https://www.slideshare.net/ssusercf5d12/python-slackbot


20170227 파이썬으로 챗봇_만들기     https://www.slideshare.net/KimSungdong1/20170227-72644192


머신러닝의 자연어 처리기술(I)    https://www.slideshare.net/ssuser06e0c5/i-64267027


인공지능, 기계학습 그리고 딥러닝  https://www.slideshare.net/JinwonLee9/ss-70446412  


[F2]자연어처리를 위한 기계학습 소개   https://www.slideshare.net/deview/f2-14341235





.

반응형
반응형

챗봇 개발을 위한 네이버 랩스 api



챗봇 개발을 위한 네이버 랩스 api

1. NAVER LABS 김정희 (jeonghee.kim@navercorp.com) 챗봇 개발을 위한 네이버 랩스 API

2. 2

3. 3 Services Devices

4. 4 Services Devices Ambient Intelligence Service Platform

5. 5 Services Devices Natural Language Interface

6. 6 Why Natural Language Interface ?

7. 7

8. 8

9. 9 제한된 interface 환경 Complex UX

10. 10 인간에게 가장 자연스러운 interface “Speech, Dialogue”

11. 11

12. 12

13. 13 Service Platform 이 된 메신저

14. 14 메신저에서 가장 자연스러운 Service UX “Dialogue”

15. 15 Pizza Service in Messenger

16. 16

17. • Chatbot 으로 서비스 하려면 ? 17

18. • Chatbot 으로 서비스 하려면 ? • ”슈프림피자 4개 주세요” • 무엇을 해야 할까? 18

19. • Chatbot 으로 서비스 하려면 ? • ”슈프림피자 4개 주세요” • 메뉴 : 슈프림피자 • 수량 : 4개 • 의도 : 주문 19

20. • Chatbot 으로 서비스 하려면 ? • ”슈프림피자 4개 주세요” • 메뉴 : 슈프림피자 • 수량 : 4개 • 의도 : 주문 • Natural Language Understanding 20

21. • Chatbot 으로 서비스 하려면 ? • ”슈프림피자 4개 주세요” • 메뉴 : 슈프림피자 • 수량 : 4개 • 의도 : 주문 • Natural Language Understanding • Who? 21

22. • Chatbot 으로 서비스 하려면 ? • ”슈프림피자 4개 주세요” • 메뉴 : 슈프림피자 • 수량 : 4개 • 의도 : 주문 • Natural Language Understanding • Who? • 서비스 개발자 • 어렵다. 귀찮다 22

23. Natural Language Understanding Natural Language 23

24. 24

25. 25 한국어

26. • 한국어 • 교착어 • 조사, 어미, 어간 • 형태소 분석 • 아버지가방에 들어가신다

27. 27

28. • 대화형 인터페이스를 만들 수 있는 엔진 및 개발 툴 • Named entity recognition 및 intent analysis 를 통한 자연어 처리 • Chat bot, app, service, device 등에 자연어 대화 인터페이스

29. • 한국어 자연어 처리 • 한국어 형태소 분석, 자연어 이해 • 한국어를 시작으로 global language 로 확장

30. Natural Language 30

31. • Built - in • Service - defined

32. • “슈프림피자 4개 주세요” • “치즈 3개로 바꿔주세요” • “4개”, “3개” • 수량 정보 • 자주 사용 예상되는 정보 • 수량, 주소, 인명 등 • 알아서 분석 해 줬으면… 32

33. • Built-in entity • 대화 서비스에서 많이 사용될 것으로 예상되는 entity • 장소, 인명, 시간 등 25개 제공 • Built-in intent • 대화 서비스에서 많이 사용될 것으로 예상되는 intent • Yes, no, cancel 등 7개 제공

34. • “슈프림 피자”, “치즈” • Service 에 따라 unique 한 정보 • 서비스 개발자가 직접 • Entity name • Entity list • 피자 메뉴 • 슈프림 : 수프림 • 페퍼로니 : 페페로니 • 치즈 : 치이즈 34

35. • Service-defined entity • 특정 서비스에서 필요하다고 생각되는 unique 한 entity 를 서비스 개발 자가 설정할 수 있는 tool • Ex) 커피 종류, 피자 종류 등 • Service-defined intent • 특정 서비스에서 필요하다고 생각되는 unique 한 intent 를 서비스 개발 자가 설정할 수 있는 tool • Ex) 피자 주문, 날씨 확인 등

36. User Messenger Service AMICA.ai Text NLU Result Service Response

37. • Dialogue management (DM) 은 제공하지 않는다. • Service response 를 결정할 때 dialogue history 사용은 service logic 에서 • DM 및 서비스 시나리오는 서비스 개발자가 직접 • 향후 개발 방향 • DM 까지 편하게 설계할 수 있도록

38. 38 if (!사이즈) printf( ”어떤 사이즈를 원하시나요”);

39. 39

40. 40 Q&A

반응형
반응형

네이버 클라우드 플랫폼 무료체험 이벤트 신청. 


https://www.ncloud.com/main/intro



무료 체험 대상 확대 및 기간 연장 안내


안녕하세요.

네이버 클라우드 플랫폼입니다.

 

네이버 클라우드 플랫폼에 보내주신 열띤 성원에 힘입어, 
최초 계획한 1,000명의 무료 체험 신청이 조기 마감 되었습니다.


더 많은 분들이 네이버 클라우드 플랫폼을 체험해 보실 수 있도록 
신청 인원을 2,000명으로 늘리고, 체험 기간도 8월 31일까지로 연장했습니다.


체험 기간 이후에도 계속해서 네이버 클라우드 플랫폼 사용을 원하시는 분들께는,

체험 기간 종료 후 부터 즉시 사용할 수 있는 50만원 이용권(Credit)을 지급해드릴 예정이오니 많은 관심과 참여 바랍니다.(Credit 지급 시점: 8월 31일 / 유효기간: 12개월 )


- 무료 체험 신청 기간 : 2017년 6월 30일까지
- 무료 체험 사용 기간 : 신청일로부터 2017년 8월 31일까지


[무료 체험 신청 바로가기]


※ 5월 16일 이전에 무료 체험을 신청하신 분들도 8월 31일까지 동일한 혜택을 누리실 수 있습니다.
※ 50만원 이용권(Credit)은 8월 31일 이전 유료 사용 전환 절차에 동의 하신 분께 한하여 8월 31일 일괄 지급 됩니다.



반응형

+ Recent posts