반응형
반응형

[python] 생성된 엑셀을  Frequency 순으로,  동일 Frequency 이면 단어순으로 정렬

import pandas as pd
from collections import Counter
import re

def read_text_file(file_path):
    """텍스트 파일을 읽고 내용을 반환"""
    with open(file_path, 'r', encoding='utf-8') as file:
        return file.read()

def count_word_frequencies(text):
    """주어진 텍스트에서 단어 빈도수 계산"""
    words = re.findall(r'\b\w+\b', text.lower())
    return Counter(words)

def save_frequencies_to_excel(frequencies, output_file):
    """단어 빈도수를 엑셀 파일로 저장"""
    # 판다스 DataFrame으로 변환
    df = pd.DataFrame(list(frequencies.items()), columns=['Word', 'Frequency'])
    # 빈도수 내림차순, 단어 알파벳순 오름차순으로 정렬
    df = df.sort_values(by=['Frequency', 'Word'], ascending=[False, True])
    # 데이터를 엑셀 파일로 저장
    df.to_excel(output_file, index=False)

# 파일 경로
file_path = 'example.txt'
output_excel = 'word_frequencies.xlsx'

# 파일 읽기
text = read_text_file(file_path)

# 빈도수 분석
frequencies = count_word_frequencies(text)

# 엑셀로 저장
save_frequencies_to_excel(frequencies, output_excel)

print("단어 빈도수가 정렬되어 엑셀 파일로 저장되었습니다.")
  1. DataFrame 변환 및 정렬: pandas.DataFrame을 사용하여 빈도수 데이터를 DataFrame으로 변환한 후, sort_values 메소드를 사용하여 먼저 Frequency 열에 대해 내림차순으로, 동일한 빈도를 가진 항목에 대해서는 Word 열을 기준으로 오름차순 정렬합니다. ascending=[False, True] 파라미터는 각각 Frequency와 Word 열에 적용됩니다.
  2. 엑셀 파일 저장: 정렬된 데이터를 .xlsx 형식의 파일로 저장합니다.
반응형
반응형

https://www.itworld.co.kr/news/334072

 

“강요되는 생성형 AI” 어디에나 생기는 AI 버튼이 부담스러운 이유

2024년에 피할 수 없는 유행어가 있다면 아마도

www.itworld.co.kr

2024년에 피할 수 없는 유행어가 있다면 아마도 "이스라엘", "선거", "머스크"일 것이다. 하지만 IT 산업으로 범위를 좁혀 하나만 꼽으라면 바로 AI이다. 암호화폐 열풍과 그 후의 폭락이 연상될 정도로, AI에 대한 높은 관심을 이용해 많은 사업이 진행되고 있다. 물론, 모두가 열풍에 올라타고 폭락은 피하고 싶을 것이다.

여기서 ‘모두’는 거의 모든 IT 업체를 말한다. 오픈AI가 이 골드러시의 중심에 있고 엔비디아가 금광을 필요한 디지털 삽을 팔고 있지만, 더 전통적인 IT 업체 역시 손 놓고 보고만 있는 것은 아니다. 유행어가 늘 그렇듯, 모든 새 PC가 'AI PC'라는 말로 빠르게 희석되고 있으며, 실제 사용자에게는 아무 의미가 없는 용어가 됐다.
 

ⓒ Microsoft
그러나 "AI"가 의미하는 생성형 AI 툴에 대해서는 일반적으로 두 가지 접근 방식이 있는 것 같다. 하나는 마이크로소프트 코파일럿처럼 챗GPT의 인기에 올라타는 것이고, 다른 하나는 구글 제미나이 시스템이나 애플의 곧 출시될 생성형 AI처럼 차세대 스타를 기대하며 새로운 AI를 내놓는 것이다.
 

어디에나 있는 AI 버튼

암호 화폐 열풍과 달리 생성형 AI는 기술을 이해하지 못해도 누구나 사용할 수 있다. 예를 들어, 몇 번의 키 입력만으로 새로운 폴아웃 TV 쇼를 풍자하는 시를 지을 수도 있다. 아주 뛰어난 시가 나오지는 않겠지만, 느린 인간의 두뇌로 몇십 분이 걸려 대사를 만드는 대신 컴퓨터가 몇 초 만에 대신 생각해 주는 것을 선호하는 이유는 누구나 알 수 있다. 그 매력은 부인할 수 없는 것이다. 
 

삼성 갤럭시 북4 울트라 코파일럿 키. 올해 모든 신형 노트북에는 마이크로소프트의 챗GPT 인터페이스로 바로 이동할 수 있는 코파일럿 버튼이 제공될 예정이다. ⓒ Mark Hachman / IDG
그래서인지 이들 업체는 물리 인터페이스와 디지털 인터페이스 모두에서 AI를 전면에 내세우려고 안간힘을 쓰고 있다. 마이크로소프트는 모든 새로운 윈도우 노트북에 전용 코파일럿 키를 제공해 사용자가 작업 표시줄의 아이콘을 클릭하는 것보다 훨씬 더 즉각적인 방식으로 챗GPT 인터페이스와 상호 작용할 수 있도록 하고 있다. 구글은 안드로이드의 독보적인 기능 중 하나인 어시스턴트를 제미나이로 대체하고 있다.

틈새 제품도 늘어나고 있다. 초기 리뷰에서 호평을 받고 있는 휴매닉 Ai 핀이 대표적이다. AI 기반 삼성 냉장고는 말할 것도 없고, AI 기반 아기 울음소리 번역기가 얼마나 뛰어난 성능을 보여줄지도 지켜볼 일이다.
 

휴메인 AI 핀 ⓒ Humane
AI 열풍에서 얻을 것이 별로 없어 보이는 로지텍도 이 흐름에 뛰어들었다. 로지텍 M750 마우스의 시그니처 AI 에디션에는 짧은 생성형 AI 작업에 초점을 맞춘 또 다른 버전의 챗GPT를 소환하는 전용 버튼이 있다. 이 기능은 이제 로지 옵션+(Logi Options+)에 내장되는데, 이는 로지텍의 마우스와 키보드 대부분에서 동일한 기능이 제공된다는 뜻이다. 다른 로지텍 제품의 다음 버전에도 전용 AI 버튼이 등장할 것으로 예상되는데, 어쩌면 로지텍이 새로운 MX 마스터 마우스를 출시하는 이유가 될지도 모른다.
 

로지텍 시그니처 AI 에디션 마우스. 로지텍의 최신 마우스에는 챗GPT를 사용하기 위한 또 다른 인터페이스를 띄우는 전용 AI 버튼이 있다. ⓒ Logitech
처음 보는 광경처럼 느껴질지 모르지만, 이전에도 비슷한 경험이 많았다. 슈퍼볼 광고에서 맷 데이먼이 비트코인을 사지 않으면 겁쟁이라고 했던 기억을 말하는 것이 아니다. 마이크로소프트가 마우스에 윈도우 버튼이 있으면 좋겠다고 하던 시절을 말하는 것도 아니다. 새로운 아이디어가 하룻밤 사이에 디지털 생활의 모든 측면으로 확산되는 경우는 많았다. 방금 오싹함을 느꼈다면 코타나의 유령이 어깨에 올라타고 있는 것일 수도 있다. 
 

이미 들어 본 노래

구글이 어시스턴트로 성공을 거두고 애플이 시리로 기반을 확보하자 모든 업체가 자체 음성 챗봇을 원했다. 아마존에는 알렉사, 마이크로소프트에는 코타나, 심지어 삼성에도 당황스러운 이름의 "빅스비"가 있다. 그리고 이들 챗봇은 디지털 인터페이스와 물리 인터페이스 모두에서 동일한 방식으로 추진됐다. 

삼성은 수억 대의 안드로이드 휴대폰에 빅스비 전용 버튼을 제공했다. 당시 안드로이드 정보 사이트에서 일했던 사람으로서 '빅스비 버튼 변경 방법' 검색으로 벌어들인 모든 수익에 대해 감사의 말을 전하고 싶다. 애플은 아이폰의 홈 버튼에 시리를 배치했고, 마이크로소프트는 악명 높은 윈도우 10 작업 표시줄에 코타나를 붙였다. 

친숙한 이야기일지도 모른다. 코타나는 윈도우의 첫 부팅 인터페이스에서도 목소리로 사용자에게 바로 말을 걸어 클리피의 그림자를 보여줬다. 일부 제조업체는 노트북 키보드에 코타나 전용 버튼을 넣거나 특정 트랙패드 제스처로 코타나를 활성화하는 등 마이크로소프트에 빠져들기도 했다. 

시리는 존재감은 달라졌지만 여전히 건재하다. 어시스턴트는 불만이 없는 것은 아니지만, 제미나이로 변신하고 있다. 알렉사 역시 여전히 살아 있지만, 아마존은 알렉사로 수익을 창출하는 방법을 아직 모른다. 그리고 빅스비는 삼성 소프트웨어 개발팀의 깊은 곳에서 AI 기반 비서가 되기 위해 부활한 것으로 보인다.

잘 알려진 것처럼, 코타나는 이미 마지막이 예정되어 있다. 마이크로소프트의 막대한 시간과 비용, 그리고 적지 않은 사용자 불만이 실제 제품보다 농담으로 더 많이 기억되는 무언가에 허비됐다. 그리고 코타나에서 가장 기억에 남는 것은 마이크로소프트가 오랫동안 코타나를 사용자에게 밀어붙였던 방식이다.
 

ⓒ Logitech
필자는 코파일럿이나 챗GPT와 같은 생성형 텍스트 도구를 부정적으로 생각하는 경향이 있다. 매우 현실적이고 본능적인 방식으로 배열을 취하고 있으며, 생성형 텍스트를 읽는 것은 마치 누군가가 크레용으로 TPS 보고서를 작성하는 것처럼 느껴지기 때문이다. 하지만 비교적 간단한 작업에서 엄청난 시간을 절약할 수 있다는 사실만으로도 많은 사용자가 왜 이 툴을 유용하게 생각하는지 알 수 있다. 필자가 판단할 일은 아니지만, 숙제를 커닝하는 것도 여기에 속할 것이다.

하지만 화면과 전용 버튼 등 인터페이스에 AI 툴을 마구 배치하는 것은 사용자의 불만을 야기하는 가장 빠른 방법이다. 아무도 마우스에 윈도우 버튼을 원하지 않았고, 아무도 와이파이 네트워크에 로그인하기 위해 코타나에게 말을 걸고 싶지 않았으며, 아무도 스마트 글래스로 사진을 찍으라고 챗GPT에게 요청하고 싶어 하지 않았다. 

생성형 AI는 기업과 일반 소비자 모두에게 흥미로운 툴이 될 수 있다. 아니면 구글 검색엔진이 걸러낼 방법을 찾아야 하는 쓰레기 텍스트로 웹을 가득 채울 반짝 유행일 수도 있다. 하지만 미래가 어떻게 되든 사용자에게 억지로 강요하는 것보다 더 빨리 싫증을 느끼게 하는 방법은 없다. 과거의 실수를 되풀이하지 말라는 코타나의 경고에 귀를 기울이기 바란다.

반응형
반응형

https://www.itworld.co.kr/news/334128

 

“로봇이 주거단지 순찰” 뉴빌리티, 미 보안 서비스 기업과 파트너십 체결

자율주행 로봇 서비스 기업 뉴빌리티가 미국 통합 보안 서비스 기업 사우스 플로리다 시큐리티 그룹(South Florida Security Gro

www.itworld.co.kr

자율주행 로봇 서비스 기업 뉴빌리티가 미국 통합 보안 서비스 기업 사우스 플로리다 시큐리티 그룹(South Florida Security Group; 이하 SFS그룹)과 손잡고 순찰로봇 서비스의 현지화를 위해 협력한다고 19일 밝혔다. 

양사는 SFS Group이 보안 서비스를 제공하는 미국 플로리다 내 커뮤니티를 중심으로 로봇을 활용한 혁신적인 보안 서비스를 검토하기 위해 최근 PoC(사업 검증) 공동 수행을 위한 계약을 체결했다. 특히, 뉴빌리티는 이번 협력을 시작으로 북미 시장 공략을 본격화해 나갈 계획이다. 
 

마이애미 주택단지를 순찰하는 뉴빌리티 순찰로봇 ⓒ neubility 
4월 8일부터 세 달간 진행되는 이번 서비스는 플로리다주 마이애미에 위치한 1,700세대가 거주하는 고급 주택단지 도랄 아일스 클럽하우스(Doral Isles Club House)에 뉴빌리티의 순찰로봇을 배치, 커뮤니티 내 보안과 안전 강화를 목표로 한다. 

서비스 기간에 뉴빌리티의 순찰로봇은 이동형 CCTV로서, 주야간 24시간 자율 순찰과 안전 점검을 수행한다. 광범위한 지역을 정밀하게 탐색할 수 있는 뉴빌리티 순찰로봇은 보안 감독의 사각지대 문제를 효과적으로 해소하고, 보안 담당자의 업무 부담을 낮출 수 있다. 뿐만 아니라, 관제 화면을 통해 여러 지역의 다중 모니터링과 이상 상황 발생 시 즉각적인 경고를 발신하는 음성 송출 기능을 지원함으로써 사고 탐지 및 대응 시간을 획기적으로 개선한다.
 

마이애미 주택단지를 순찰하는 뉴빌리티 순찰로봇 ⓒ neubility 
뉴빌리티의 이상민 대표는 "이번 기술 검증은 뉴빌리티가 북미 시장에 성공적으로 진입하는 데 있어 중대한 이정표가 될 것"이라며, "다양한 환경에서의 폭넓은 적용 가능성을 고려해 설계된 뉴빌리티 로봇이 이번 검증을 통해 가치를 입증할 것으로 확신한다"고 포부를 밝혔다. 

SFS 그룹 리고 페레즈회장은 "SFS그룹은 뉴빌리티와의 파트너십을 통해 혁신을 꾀하고 보안 업계를 선도할 계획”이라며, “보안 솔루션에 순찰로봇을 도입한 것은 고객에게 가장 혁신적이고도 효과적인 보안 조치를 제공하려는 SFS그룹의 미래 지향적인 접근 방식을 반영한 것"이라고 설명했다.

한편, 뉴빌리티는 국내에서 덕성여대, 강원대, 부경대 등 캠퍼스와 송도 센트럴파크에서 순찰로봇을 운영해 오며 다양한 위험 시나리오에 대응하는 순찰 기능 개발 및 고도화를 거쳐왔다. 지난 1월에는 CES 2024에서 전 세계에서 모인 업계 전문가, 투자자, 시장 관계자를 대상으로 자율주행 순찰로봇을 선보인 바 있다. 

반응형
반응형

[python] 웹 기반 파이썬 데이터 앱 쉽게 다루는 스트림릿( Streamlit ) 간단 예제

 

 

https://www.itworld.co.kr/news/334135

 

파이썬 애플리케이션의 공통적인 문제는 다른 사람들과 앱을 공유할 방법이다. 개발자들은 이 문제를 해결하기 위해 웹 인터페이스를 사용해서 UI를 통해 앱 기능을 제공하는 경우가 많다. 그러나 이 방법은 애플리케이션 UI가 웹 구성요소와 자연스럽게 맞을 때 가장 효과적이다. 예를 들어 데이터 탐색 앱은 이와 같은 방식으로 작동할 수 있지만, 이상적인 상호작용을 위해서는 프론트엔드 구성요소가 자바스크립트로 작성돼 있어야 한다.
 
스트림릿(Streamlit)은 이와 같은 많은 문제를 동시에 해결하는 것을 목표로 하는 파이썬 라이브러리다. 개발자는 스트림릿을 사용해서 풍부한 인터랙티브 구성요소 라이브러리를 기반으로 구축된 웹 기반 프론트엔드를 갖춘 파이썬 앱을 만들 수 있다.
 
그렇게 만들어진 애플리케이션은 파이썬 웹 앱이 있는 어디에나 호스팅할 수 있다. 무엇보다 좋은 점은 좋은 결과를 얻기 위해 반드시 HTML, 자바스크립트 또는 CSS에 대해 알 필요는 없다는 것이다. 스트림릿의 메서드와 클래스를 사용하는 파이썬 코드를 작성하기만 하면 된다.
 

간단한 스트림릿 예제

스트림릿 프로그램은 선언적 스타일로 작성된다. 객체는 코드에서 선언된 순서대로 웹 페이지에 나타난다. 구성요소와의 상호작용이 발생할 때마다 프로그램이 위에서부터 아래로 다시 실행되면서 웹 페이지를 다시 로드해 변경 사항을 반영한다.
 
다음과 같은 간단한 스트림릿 앱 예제를 살펴보자.
 

import streamlit as st

st.title("Take input from the user")
user_input = st.text_input("Say something:")

if user_input:
    st.write("You said:", user_input)

 
스트림릿으로 이 코드를 실행할 경우(streamlit run 명령 사용) 결과는 다음과 같다.

  1. 'Take input from the user'라는 제목의 웹페이지가 나타난다.
  2. 그 아래에 'Say something:'이라는 레이블이 붙은 텍스트 상자가 나타난다.
  3. 사용자가 이 텍스트 상자에 뭔가를 입력하고 Enter를 누르면 'You said:'라는 레이블의 텍스트 상자 아래에 사용자가 입력한 내용이 표시된다.

 
이러한 HTML 위젯과 모든 위젯 동작은 스트림릿에 의해 자동으로 생성되고 관리된다. 여기에는 앱 상태가 포함된다(예를 들어 user_input 상자에서 if 문은 사용자가 뭔가를 입력할 때만 실행됨).
 
스트림릿에서는 아래 예제보다 훨씬 더 많은 HTML 구성요소를 사용할 수 있다. 라텍스(LaTex) 형식 텍스트, 보케(Bokeh) 차트, 카메라 입력, 그 외에도 많은 구성요소가 네이티브로 제공된다.
 

더 복잡한 스트림릿 예제

더 복잡한 스트림릿 애플리케이션으로는 스트림릿 문서의 예제가 있다. 이 앱은 시간별로 그룹화된 맨해튼의 우버 승차 및 하차 지점 일반 데이터 집합을 로드한 다음 막대형 차트에 시간을 표시하고 인터랙티브 지도에 위치를 표시한다.
 
전체 프로그램 길이는 약 30줄에 불과하다. 워낙 짧아서 복사한 다음 파일에 붙여넣고 직접 실행할 수 있다. 스트림릿이 다양한 작업을 수행하는 방식을 보여주는 용도로도 좋은 앱이다.
 

스트림릿 앱의 데이터

스트림릿은 데이터 소스를 쉽게 다루기 위한 많은 네이티브 동작을 제공하며 데이터 로드 및 작업을 위한 주 형식으로 데이터프레임을 사용한다.
 
다른 파이썬 프로젝트에서 사용할 수 있는 모든 소스에서 데이터를 로드할 수 있으며, 이 과정을 돕기 위한 편의 기능도 제공된다. 예를 들어 이전 섹션에서 다룬 데이터 시각화 앱은 판다스(Pandas)를 사용해 원격 URL에서 CSV 파일을 로드하고 데이터프레임으로 변환한다. 데이터 로드와 형식 설정은 편리하지만 특히 네트워크 연결을 통해 로드하는 경우 속도가 느리고 많은 시간이 걸릴 수 있다. 또한 이 프로그램은 사용자가 동작을 수행한 후 매번 다시 로드된다.
 
스트림릿은 이 문제를 해소하기 위해 load_data() 함수를 래핑하는 데 사용되는 @st.cache_data 데코레이터를 제공한다. 또한 @st.cache_data는 애플리케이션이 여러 번 다시 로드되는 사이 데이터를 캐시하므로 처음 실행할 때만 로드된다.
 

스트림릿 앱의 상태 관리

스트림릿은 설계상 각 사용자 상호작용마다 애플리케이션이 강제로 다시 로드되므로 스트림릿 앱에서 지속적인 상태를 유지하기가 간단치 않을 수 있다. 텍스트 박스의 데이터가 실행 간 상태를 어떻게 처리하는지는 앞에서 살펴봤다. 개별 컨트롤의 상태와는 별개로 상태를 만들고 관리하려면 스트림릿의 내장된 session_state 객체를 사용해야 한다.
 
streamlit.session_state는 여러 실행 간에 지속되는 키-값 저장소다(실질적으로 사전). 스트림릿 프로그램이 처음 시작될 때 이 저장소는 빈 상태이므로 액세스하기 전에 키가 있는지 여부를 테스트해야 한다.
 

import streamlit as st

# create the key "sayings" if it doesn't exist
if 'sayings' not in st.session_state:
    st.session_state['sayings'] = []

# for convenience, make a reference
sayings = st.session_state['sayings']

st.title("Take input from the user")
user_input = st.text_input("Say something:")

if sayings:
    # display "sayings" if it has inputs from previous runs
    st.write("You previously said:", sayings)

if user_input:
    # add to "sayings" if we get an input
    sayings.append(user_input)
    st.write("You said:", user_input)


참고로 session_state에 저장되는 모든 데이터는 해당 애플리케이션을 실행하는 스트림릿 서버의 수명 동안만 지속된다. 서버가 멈추면 데이터는 손실된다. 더 적극적으로 지속되는 데이터를 원한다면 데이터베이스 또는 레디스와 같은 인메모리 캐시 등의 솔루션이 필요하다.
 

스트림릿 앱을 위한 데이터 위젯

지금까지 스트림릿 페이지에서 구현 가능한 다양한 요소로 간단한 텍스트 레이블 또는 HTML 컨트롤부터 지도, 차트, 오디오/비디오 재생과 같은 더 정교한 요소, 그리고 채팅 상자와 같은 고급 상호작용(예를 들어 LLM과의 상호작용 용도)까지 살펴봤다.
 
데이터 표시 또는 상호작용을 위한 스트림릿 컨트롤은 가장 일반적인 사용 사례를 위한 데이터 렌더링을 처리하도록 이미 사전 설정돼 있다. 예를 들어 스트림릿 웹 위젯은 데이터프레임을 소스로 사용할 수 있고 데이터프레임을 적절한 열 레이블과 함께 자동으로 표시하므로 수동으로 이를 추가할 필요가 없다.
 
스트림릿에는 폭넓은 일반적인 데이터 위젯 라이브러리가 기본적으로 포함된다. 사용자 커뮤니티에는 더 많은 구성요소가 만들어져 공유되며, 간단한 pip install을 통해 사용할 수 있다.
 

스트림릿 앱 배포

스트림릿 애플리케이션은 본질적으로 파이썬 웹 애플리케이션이므로 네트워크로 연결된 파이썬 앱과 거의 같은 방식으로 배포할 수 있다. 빠르고 간편한 방법은 컴퓨터에서 앱을 실행하고 할당된 포트를 통해 앱에 대한 액세스 권한을 제공하는 것이다.
 
고급 배포 역시 다른 파이썬 웹 앱과 동일한 패턴을 따른다. 즉, 도커, 쿠버네티스 또는 다양한 일반적인 클라우드 서비스를 사용하는 것이다. AWS와 마이크로소프트 애저의 스노우플레이크 사용자는 스노우플레이크 데이터 저장소를 기반으로 하는 스트림릿 앱을 배포할 수도 있다. 마지막으로, 스트림릿은 자체적인 커뮤니티 클라우드(Community Cloud) 호스팅 서비스를 제공한다. 다만 이는 스트림릿 앱을 위한 편의 기능일 뿐 필수 항목은 아니다.

반응형
반응형

https://streamlit.io/

 

streamlit

A faster way to build and share data apps

pypi.org

https://pypi.org/project/streamlit/

 

Streamlit • A faster way to build and share data apps

Streamlit is an open-source Python framework for machine learning and data science teams. Create interactive data apps in minutes.

streamlit.io

https://pyscript.com/

 

PyScript

 

pyscript.com

What is Streamlit?

Streamlit lets you transform Python scripts into interactive web apps in minutes, instead of weeks. Build dashboards, generate reports, or create chat apps. Once you’ve created an app, you can use our Community Cloud platform to deploy, manage, and share your app.

Why choose Streamlit?

  • Simple and Pythonic: Write beautiful, easy-to-read code.
  • Fast, interactive prototyping: Let others interact with your data and provide feedback quickly.
  • Live editing: See your app update instantly as you edit your script.
  • Open-source and free: Join a vibrant community and contribute to Streamlit's future.

Installation

Open a terminal and run:

$ pip install streamlit
$ streamlit hello

 

ctrl + C : 웹서버 shutdown 

 

.

반응형
반응형

인력 관리자의 가장 중요한 임무 중 하나가 직속 부하 직원의 성장을 돕는 것이라는 사실은 누구나 알고 있습니다. 그들에게 기술과 역량을 키우는 공간과 격려, 프로젝트 확장을 제공합니다.

그리고 최악의 죄를 짓지 않고 이 모든 일을 해내는 것이 바로 마이크로 매니지먼트입니다. 내가 만난 거의 모든 사람들이 마이크로 관리자 밑에서 어려움을 겪었습니다. 누군가는 자신의 직속 직원을 맴돌고, 잔소리하고, 질식시키는 사람입니다. 일반적으로 불안감, 신뢰 부족 및/또는 순전한 무능력으로 인해 발생합니다.

최근 기술직 근로자를 대상으로 한 설문 조사 에서 응답자의 39%는 마이크로 관리가 상사의 최악의 특성이라고 답했습니다. 그것은 다른 어떤 단일 특성보다 훨씬 더 많은 것입니다. 그뿐만 아니라, 다른 설문 조사 에서는 거의 75%의 응답자가 마이크로 관리가 유해한 직장의 첫 번째 징후라고 답했습니다. 좋아요.

세세한 부분까지 관리하는 것이 얼마나 끔찍한 일인지 생각해보면, 경영 서술이 왜 그 반대에 집중되어 있는지 알 수 있습니다.

지원, 신뢰, 자유, 공간. 파리! 자유로워라! 아름답습니다.

하지만 아마도 우리가 지나치게 수정한 것 같습니다.

 

베타를 뿌리지 마세요

최근에 우리 가족은 실내 암벽 등반을 시작했습니다. 이 비유를 열심히 설명하는 동안 양해해 주시기 바랍니다.

실내 등반의 일반적인 형태 중 하나는 "탑 로핑"이라고 합니다. 우리는 이미 꼭대기에 있는 안전한 지점을 통해 밧줄이 감겨져 있는 벽으로 다가갔다가 다시 내려왔습니다. 우리는 로프의 양쪽 끝에 묶습니다. 한 명은 등반하고 다른 한 명은 빌레이(등산가의 안전을 유지)합니다.

올라가면 내려가는 길이 멀다. 계속해서 활동적인 빌레이어를 두는 것이 좋습니다!

등산가는 힘든 일을 합니다. 그들은 작은 움직임과 큰 움직임을 통해 발전해야 합니다. 그들은 그것을 지나쳐 계속 올라갈 수 있을 때까지 각 문제를 시도하고, 넘어지고, 노력합니다. 지옥처럼 활동적이에요.

하지만 좋은 빌레이어라는 직업도 꽤 활동적이에요. 그들은 경계를 늦추지 않고 느슨해진 부분을 잡고 항상 손을 밧줄에 올려 놓습니다. 그들의 임무는 넘어지는 것을 잡는 것뿐만 아니라 등반가가 위험을 감수할 수 있도록 안전감을 제공하는 것입니다. 그들은 현장에서만 그 일을 하는 것이 아닙니다. 지금까지 가장 중요한 부분인 대부분은 처음부터 끝까지 모든 과정에서 발생합니다. (비유를 이해하기 시작하는 사람이 있습니까 ??)

물론 지나치게 활동적인 빌레이어도 끔찍합니다. 밧줄을 너무 세게 당기면 상대의 체중을 짊어지고 균형이 무너지며 귀중한 경험을 빼앗길 수 있습니다.

그러나 상황은 더욱 악화될 수 있습니다.

특정 루트를 오르는 방법에 대한 정보를 베타 라고 합니다 . (재미있는 사실 - 그 이름은 야외 등반가들이 Betamax 테이프 에 자신의 경로를 기록하던 시절에서 유래되었습니다 .) 누군가 다음에 해야 할 일에 대한 정보를 과도하게 공유할 때, 우리가 연주하는 것처럼 왼손, 오른발을 외칠 때 트위스터 , 베타 스프레이 라고 합니다 .

클라이머들은 사람들이 마이크로 관리를 싫어하는 것과 같은 방식으로 베타를 뿌리는 것을 싫어하며, 대부분 같은 이유 때문입니다. 나쁜 빌레이어는 베타에 스프레이를 뿌립니다.

하지만 좋은 빌레이어는 훌륭한 관리자의 모델이기도 합니다. 아마도 현재 제공되는 많은 관리 조언보다 더 나은 것일 수도 있습니다. (이제 이 비유를 집까지 가져가겠습니다! 🤦🏻 )

관리자로서 우리는 마이크로 관리를 너무 두려워하여 수동적인 영역으로 이동할 위험이 있습니다. 우리는 우리의 주된 임무가 사람들이 성장할 수 있는 위치에 있도록 하고, 그들에게 성장할 수 있는 공간을 제공하는 것이라고 믿게 되었습니다.

하지만 그것은 등반가가 더 어려운 길을 택하도록 격려하고, 밧줄을 꽉 붙잡는 대신 TikTok을 확인하는 동안 그들이 시작할 때 응원하는 것과 같습니다.

최선을 다하려면 그 등반가는 처음부터 끝까지 적극적인 빌레이가 필요합니다. 밧줄에 걸려 몇 피트만 떨어졌을 때 다시 시도하는 것은 쉽습니다. 이것은 가장 교육적인 실패이며, 피하고 싶은 큰 실패입니다.

결국, 당신을 사로잡는 것은 넘어지는 것이 아니라 바닥에서 갑자기 멈추는 것입니다.

 

활동적이지만 지나치게 활동적이지는 않음

이 지나친 등반 비유가 우리에게 무엇인가를 가르쳐준다면, 사전 예방적인 관리와 세세한 관리는 결코 같은 것이 아니라는 점을 바랍니다. 훌륭한 관리자는 누군가에게 올바른 길을 안내하고 최선을 다하도록 격려하는 것 이상의 일을 합니다.

그게 전부라면 충분히 관리하고 있지 않은 것입니다.

좀 더 활동적이어야 하지만 올바른 방법으로 해야 합니다.

훌륭한 관리자가 직원의 학습과 성장을 지원하는 세 가지 방법은 다음과 같습니다. 단, 세세한 관리는 필요하지 않습니다.

클라이밍은 관리와 마찬가지로 일관된 팀 스포츠입니다. 계획을 세우고, 명확성을 제공하고, 액세스 권한을 부여하고 처음부터 끝까지 계속 진행하세요!

명확성을 제공하십시오. 기대치, 역할, 결과에 대한 정보가 거의 없는 상태에서 누군가를 모호한 작업에 방치하는 것은 재앙을 초래하는 비결입니다. 좋은 관리자는 무엇을, 왜 하는지에 대한 적극적인 안내자입니다. 많은 맥락을 바탕으로 명확한 목표, 동기, 기대치를 설정하세요. 방법을 규정하지 않고 모두.

이것은 처음부터 한 번만 일어나는 대화가 아닙니다. 등반에 관한 한 가지 사실은, 올라가서 어려움을 겪을 때 주변에 무엇이 있는지 확인하기가 어려울 수 있다는 것입니다. 때로는 아래에서 보는 풍경이 꼭 필요한 것일 때도 있습니다. 직장에서도 대개 정기적으로 명확성을 다시 확립해야 합니다. 진전을 이루는 현실은 당신이 시작한 모든 선명함을 더럽히고 얼룩지게 만듭니다.

액세스, 컨텍스트를 제공합니다. 업무 수행은 외부에서 보이는 것보다 덜 매력적일 때가 많습니다. 우리는 익숙하지 않은 활동을 극화하고 지나치게 복잡하게 만드는 경향이 있습니다. 암벽 등반에 대한 나의 설명이 끔찍하고 불가능하다고 생각할 수도 있습니다. 하지만 동네 체육관에 가서 요령을 보여줄 사람을 찾는다면 (하!) 오래 걸리지 않을 것입니다.

따라서 좋은 관리자의 움직임은 프로젝트의 맥락을 드러내는 액세스를 제공하는 것입니다. 다음 주에 CEO에게 프레젠테이션을 하라고 요청하면 이번 주 회의에 초대하고 최근 프레젠테이션을 공유할 수도 있습니다.

우리는 관련된 사람들의 복잡성과 사회적 역학에 대해 이야기할 것입니다. 당신이 그것을 스스로 알아내리라 기대하는 것은 불공평합니다. 그것은 안전, 예절, 체육관 문화에 대해 가르치지 않고 등반에 초대하는 것과 같습니다.

당신도 나처럼 할 것이라는 기대는 없습니다. 모든 것을 이해하는 것이 성공을 위한 적극적이고 일관된 관리 프로세스라는 것입니다.

계획을 세우세요.

우리는 함께 땅 위에 서서 오르막을 올려다보고 있습니다. 내가 도와줄 거라는 걸 알면서 그냥 가셔도 돼요. 그러나 현명한 조치는 아마도 잠시 시간을 내어 계획을 세우는 것입니다.

이 문제를 어떻게 해결하실 건가요? 단계와 이정표는 무엇입니까? 가장 힘든 부분은 무엇인 것 같나요?

이것은 베타를 뿌리는 것과는 완전히 다릅니다. 당신이 나에게 요청하든 안 하든 나는 당신의 모든 행동을 안내하려는 것이 아닙니다. 방법은 당신에게 달려 있습니다. 대신, 저는 여러분과 협력하여 여러분만의 솔루션을 찾기 위한 템플릿을 만들고 있습니다. 결국 두 사람이 같은 길로 오르는 일은 없습니다!

다시 한 번 말씀드리지만 이는 일회성 조치가 아닙니다. 확보자가 체중을 지탱하는 동안 등반가가 길을 따라 멈추고 휴식을 취하고 재편성하는 것은 흔한 일입니다. 마찬가지로, 훌륭하고 적극적인 관리자의 움직임은 상황이 어떻게 진행되고 있는지, 상황이 기대치에 어떻게 매핑되는지(또는 그렇지 않은지), 계획을 어떻게 조정해야 하는지 정기적으로 확인하는 것입니다.

 

더 많은 작업(자주)

터무니없는 등반 비유 외에도 제가 계속해서 생각하는 점을 여러분은 알아차렸을 것입니다. 관리자가 누군가를 올바른 길로 안내하는 것만으로는 충분하지 않습니다. 일의 현실은 끊임없이 당신을 두들겨패고 계획을 바꿔 당신이 시작한 모든 선명함을 얼룩지게 하고 번지게 할 것입니다. 그러니 대화를 계속 이어나가야 합니다.

다시 안전하게 내려오는 것보다 더 슈퍼 히어로가 된 기분을 느끼게 하는 것은 없습니다. 정말 멋진 팀이에요!

많은 관리자들이 세세한 관리를 너무 두려워하여 충분히 관리하지 못합니다. 그들은 이탈을 생산적인 공간과 혼동합니다. 그러나 훌륭한 인력 관리자는 마우스를 가리키거나 추측하거나 인계받지 않고 계속해서 참여합니다.

당신이 성공하는 것을 보고 싶은 등반가를 땅바닥에 서서 올려다보는 것은 힘이 빠지는 것처럼 느껴질 수 있습니다. 그들은 저 위에 있고 여러분은 여기 아래에 있습니다. 원한다고 해서 뛰어들 수는 없습니다.

그러나 그것이 바로 그 느낌이어야 합니다. 여러분이 할 수 있는 일이 많이 있다는 것이 밝혀졌지만, 무슨 일이 있어도 저 벽 위에는 그들이 있습니다. 계속해서 참여하고, 격려하며, 그들이 다시 안전하게 내려올 때를 대비하여 매운 주먹 부딪치기를 준비하는 동안 그들이 할 일을 하게 하십시오.

 

반응형

+ Recent posts