반응형
반응형

붐비는 공공 장소에서의 공격

 

https://www.ready.gov/public-spaces

 

Attacks in Crowded and Public Spaces | Ready.gov

Prepare Before Survive During Be Safe After Related Content Take steps to prepare and protect yourself and help others in the event of a mass attack. Types of Mass Attacks Individuals using firearms to cause mass casualties (active shooter).Individuals usi

www.ready.gov

 

https://www.youtube.com/watch?v=5VcSwejU2D0  

발생 전 대비

 

발생 기간 생존

 

발생 후 안전

 

관련 콘텐츠

장소에서의 공격

대규모 공격이 발생할 경우, 이에 대비해 스스로를 지키며 다른 사람을 돕기 위한 조치를 취하십시오.

대규모 공격 유형

  • 총기류를 이용해 대량 사상자를 발생시키는 경우(총기 난사자)
  • 차량을 이용해 대량 사상자를 발생시키는 경우
  • 수제 폭탄을 이용해 대량 사상자를 발생시키는 경우
  • 대규모 공격에 사용되는 다른 방법에는 칼, 화재, 드론 또는 기타 무기가 포함될 수 있습니다.

대규모 공격 전 대비

Image
  • 경계를 늦추지 마십시오. 항상 주변 환경과 잠재적 위험에 주의를 기울이십시오.
  • 이상한 점을 발견하면 관할 당국에 이를 알리십시오. 여기에는 의심스러운 포장물, 이상하게 행동하는 사람 또는 낯선 통신장비를 사용하는 사람 등이 해당됩니다.
  • 경고 신호를 관찰하십시오. 비정상적 또는 폭력적 의사소통, 약물 남용, 분노 표출 또는 상해를 입히려는 의도가 경고 신호에 포함될 수 있습니다. 이러한 경고 신호는 시간이 지남에 따라 증가할 수 있습니다.
  • 탈출 계획을 마련하십시오. 직장, 학교 및 특별 행사 등 방문지마다 출구와 숨을 곳을 확인해 둡니다.
  • 인명 구조 기술을 익혀두십시오. 구조대가 도착하기 전에 부상자를 돕기 위한 응급처치 및 '도움의 손길이 도착할 때까지 귀하가 도움의 손길입니다(You Are the Help Until Help Arrives)'와 같은 교육을 받습니다.

공격으로부터 살아남기: 도망치기, 숨기, 싸우기

Image

안전한 곳으로 도망치기

  • 안전한 곳을 찾으십시오. 공격자에게서 빠져나가는 것이 최우선입니다.
  • 소지품은 그대로 두고 빠져나갑니다.
  • 안전해지면 9-1-1에 전화해 공격자, 위치 및 무기에 대해 설명합니다.

가리고 숨어있기

  • 대피할 수 없는 경우 몸을 가리고 숨어 있도록 합니다. 공격자의 시야에서 벗어난 은신처를 찾고 가능한 경우 나와 위협물 사이에 견고한 방어막을 세워 두십시오.
  • 출입구는 봉쇄 및 차단하고, 블라인드를 내리고 조명을 끄도록 합니다.
  • 소리를 내지 않고 조용히 있습니다.

방어하고, 방해하고, 싸우기

  • 최후의 수단으로만 싸우십시오. 도망가거나 숨을 수 없을 경우, 공격을 방해하거나 공격자를 무력화시키십시오.
  • 공격적이고 적극적으로 행동합니다.
  • 다른 사람들을 모아 의자, 소화기, 가위, 책 등과 같은 임시 무기로 공격자를 기습공격합니다.
  • 공격자에게 심각하거나 치명적인 부상을 입힐 수 있도록 대비태세를 갖추십시오.

부상자 돕기

  • 먼저 스스로를 돌본 다음 가능한 경우, 부상자를 안전하게 대피시키고 즉시 치료해 주십시오. 안전해지면 9-1-1에 전화합니다.

대규모 공격 이후 안전 유지

법 집행관 도착 시

  • 침착함을 유지하고 지시를 따릅니다.
  • 양손을 보이게 하고 아무것도 들고 있지 않도록 합니다.
  • 지정된 지역에 보고해 정보를 제공하고 지원을 받습니다.
  •  집행관의 지시를 따르고 지시한 방향으로 대피합니다. 법 집행관에게 상황과 관련한 정보를 듣습니다. 가족 및 친구와 최대한 새로운 소식을 공유합니다.

전문적 도움 고려하기

정신 건강에 유의하십시오. 필요한 경우, 나와 가족이 트라우마에 대처할 수 있도록 도움을 구합니다.

관련 콘텐츠

 

Last Updated: 11/01/2022

 

반응형
반응형

긴급취재 이태원 참사 - 후반부 - PD수첩 2022년11월1일 방송

https://www.youtube.com/watch?v=B9Q84TgHOls 

 

반응형
반응형

긴급취재 이태원 참사 - 전반부 - PD수첩 2022년11월1일 방송

https://www.youtube.com/watch?v=c8Da3yoay9I 

 

반응형
반응형

MSSQL 링크드서버,  linked server

 

MSSQL 은 연결된서버 기능을 제공하는데 이를 이용하면 다른 네트워크의 데이터베이스를 원격으로 접속하여

   사용할 수 있도록 해줍니다. 

-- MSSQL 연결된 서버 생성

EXEC sp_addlinkedserver
      @server = '[연결된 서버별칭]',
      @srvproduct = '',
      @provider = 'SQLOLEDB',
      @datasrc = '[서버 아이피]',
      @catalog = '[데이터 베이스명]'



-- MSSQL 연결계정 생성

EXEC sp_addlinkedsrvlogin
      @rmtsrvname= '[연결된 서버별칭]',
      @useself= 'false',
      @rmtuser = '[사용자 이름]',
      @rmtpassword = '[사용자 암호]'
      
      
-- MSSQL 연결된 서버 확인
   SELECT * FROM master.dbo.sysservers WHERE srvname = '[연결된 서버별칭]'
   

-- MSSQL 연결계정 확인
   SELECT * FROM master.sys.linked_logins WHERE remote_name = '[사용자 이름]'
   
   
-- MSSQL 연결된 서버 이용방법 
   /*연결된 서버를 등록한 후 사용하려면 [연결된 서버별칭].[데이터 베이스명].[데이터베이스 소유자명].[테이블명]
   형태로 호출하여 사용할 수 있습니다.
   SELECT 쿼리를 예로 들면 아래와 같습니다. */

 -- MSSQL 일반서버에 SELECT 쿼리시
   SELECT [컬럼명] FROM [테이블명] WHERE [조건절]

-- MSSQL 연결된 서버에 SELECT 쿼리시
   SELECT [컬럼명] FROM [연결된 서버별칭].[데이터 베이스명].[데이터베이스 소유자명].[테이블명] WHERE [조건절]

-- MSSQL 연결된 서버 삭제
  EXEC sp_dropserver
      @server = '[연결된 서버별칭]'

-- MSSQL 연결계정 삭제
   EXEC sp_droplinkedsrvlogin
      @rmtsrvname= '[연결된 서버별칭]',
      @locallogin = NULL
반응형
반응형

SQL Server 모든 테이블 크기를 조회하는 쿼리

테이블의 건수와, 테이블에 구성된 인덱스들의 합도 같이 확인할 수 있습니다.

SELECT
    OBJECT_SCHEMA_NAME(a2.object_id) AS SchemaName,
    a2.name AS TableName,
    a1.rows as [RowCount],
    CAST(ROUND(((a1.reserved + ISNULL(a4.reserved,0)) * 8) / 1024.00, 2) AS NUMERIC(36, 2)) AS ReservedSize_MB,
    CAST(ROUND(a1.data * 8 / 1024.00, 2) AS NUMERIC(36, 2)) AS DataSize_MB,
    CAST(ROUND((CASE WHEN (a1.used + ISNULL(a4.used,0)) > a1.data THEN (a1.used + ISNULL(a4.used,0)) - a1.data ELSE 0 END) * 8 / 1024.00, 2) AS NUMERIC(36, 2)) AS IndexSize_MB,
    CAST(ROUND((CASE WHEN (a1.reserved + ISNULL(a4.reserved,0)) > a1.used THEN (a1.reserved + ISNULL(a4.reserved,0)) - a1.used ELSE 0 END) * 8 / 1024.00, 2) AS NUMERIC(36, 2)) AS UnusedSize_MB
FROM
    (SELECT 
        ps.object_id,
        SUM (CASE WHEN (ps.index_id < 2) THEN row_count ELSE 0 END) AS [rows],
        SUM (ps.reserved_page_count) AS reserved,
        SUM (CASE
                WHEN (ps.index_id < 2) THEN (ps.in_row_data_page_count + ps.lob_used_page_count + ps.row_overflow_used_page_count)
                ELSE (ps.lob_used_page_count + ps.row_overflow_used_page_count)
            END
            ) AS data,
        SUM (ps.used_page_count) AS used
    FROM sys.dm_db_partition_stats ps
    GROUP BY ps.object_id) AS a1
LEFT OUTER JOIN 
    (SELECT 
        it.parent_id,
        SUM(ps.reserved_page_count) AS reserved,
        SUM(ps.used_page_count) AS used
     FROM sys.dm_db_partition_stats ps
     INNER JOIN sys.internal_tables it ON (it.object_id = ps.object_id)
     WHERE it.internal_type IN (202,204)
     GROUP BY it.parent_id) AS a4 ON (a4.parent_id = a1.object_id)
INNER JOIN sys.all_objects a2  ON ( a1.object_id = a2.object_id ) 
WHERE a2.type <> N'S' and a2.type <> N'IT'
ORDER BY ReservedSize_MB DESC
반응형
반응형

The 10 Best Data Visualizations of 2022

https://towardsdatascience.com/the-10-best-data-visualizations-of-2022-3e49d7ccb832

 

The 10 Best Data Visualizations of 2022

Awesome visualizations on the Ukraine War, Inflation, and more!

towardsdatascience.com

Last year I shared what I thought were ten of the best data visualizations from 2021. I’m back again with ten of the best data visualizations from 2022!

Similar to last year, I wanted to share a variety of types of data visualizations, and also ones that were relevant with particular events that happened this year.

Let’s dive into it!

 

Be sure to SUBSCRIBE here to never miss another article on data science guides, tricks and tips, life lessons, and more!

 

1. NATO vs Russia

 

One of the biggest events this year was the war between Russia and Ukraine. Comforting or not, the infograph above shows the difference in military power between NATO and Russia. The actual data can be found here.

I love this infograph, it’s many pictographs combined into one, it’s clean, and it’s very clear what message it’s trying to convey.

NATO out-powers Russia in every aspect other than Nuclear Weapons… I wonder how this would change if Russia’s budget towards nuclear weapons went to other things 🤔.

 

Be sure to SUBSCRIBE here to never miss another article on data science guides, tricks and tips, life lessons, and more!

 

2. Inflation and the cost of everyday items

 

One of the consequences of the war between Russia and Ukraine is inflation. If you click on the visualization above, you’ll see how inflation has impacted our cost of every day items, like gas, coffee, and corn. (On the bright side, the cost of orange juice went down!)

If you’re interested, this type of data visualization is similar to a bar chart race, which is a dynamic bar chart shown over a period of time. If you want to build one yourself, here’s a tutorial that you can check out.

3. More on inflation and wages!

 

Every day items aren’t the only things affected by inflation, wages are also impacted by inflation. What does this mean? As inflation increases, the value of the dollar decreases, meaning our dollar doesn’t go as far as it used to.

This visualization is a dynamic line chart that shows how wage growth and inflation has changed since 2015. In 2021, for the first time since 2015, inflation surpassed wage growth.

4. School Shootings

 

Sometimes, a static bar chart is all you need to convey a message. This visualization shows the number of school shootings by country from 2009 to 2018. If this doesn’t imply that the US has a gun problem, I don’t know what does!

FYI, the US has 48 times more school shootings than the second highest country… fourty eight!

 

Be sure to SUBSCRIBE here to never miss another article on data science guides, tricks and tips, life lessons, and more!

 

5. What are people studying in school?

 

While we’re on the topic of school, the image above shows the fastest growing and shrinking fields of study in US colleges. STEM fields seem to make up the fastest growing fields, while arts and history fields seem to make up the fastest shrinking fields.

This data was provided by the U.S. Department of Education.

6. Time it takes for a hacker to brute force your password in 2022

 

Ever wonder why certain websites require a variety of characters and a minimum number ? This visualization shows the time that it takes a hacker to brute force your password in 2022.

What makes this visualization so powerful is how comprehensive it is — part of this is attributed to the colour scheme depending on how long it takes to brute for the password.

The data was compiled from How Secure is My Password and this was built using Illustrator and Excel.

7. Most popular web browsers over the last 28 Years

 

Now for the “Most Popular” visualizations of the year, this visualization shows the most popular web browsers over the last 28 years! As of March 2022, it’s no surprise that Google Chrome takes 80% of the market share, but that wasn’t the case back in the day.

This type of visualization is called a pie chart race, and it’s serves a similar purpose as as bar chart race, except that it’s more useful when you’re trying to emphasize proportions as opposed to absolute numbers.

The data used to build this was taken from the following sources:

  • W3Schools (Jul-99 to present)
  • WebSideStory (Feb-99 to Jun-06)
  • GVU WWW user survey (Jan-94 to Oct-98)
  • EWS Web Server at UIUC (Jun-96 to Dec-98)

8. Most Popular websites since 1993

 

The most popular web browsers is one thing, but the most popular websites is another. This visualization shows the most popular websites since 1993. What’s surprising is that Yahoo is still the ninth most visited website as of January 2022!

This type of data visualization is called a bar chart race. I’m sure you’ve seen many of these all over YouTube and Reddit.

9. Most spoken languages in the world

 

Another simple yet powerful visualization, this bar chart shows the most spoken languages in the world, with the top three being English, Mandarin, and Hindi.

This visualization was created using ggplot in R with data provided from Wikipedia.

 

Be sure to SUBSCRIBE here to never miss another article on data science guides, tricks and tips, life lessons, and more!

 

10. Biggest Fast Food Chains

 

For the last article, this visualization shows the top 50 biggest fast food chains based on the number of stores in the US. You can see that it’s split by “food category”, and within each category, the size of each restaurant represents its magnitude.

Who know that there were more Subways and Starbucks than McDonalds?

This visualization is called a treemap and is typically used when you want to visualize hierarchical and partitioned data. If you want to learn how to build one in Python, check out this link.

 

반응형

+ Recent posts