나쁜 운명을 깨울까봐 살금살금 걷는다면
좋은 운명도 깨우지 못할 것 아닌가.
난 나쁜 운명, 좋은 운명 모조리 다 깨워가며 저벅 저벅,
당당하게 큰 걸음으로 걸으며 살 것이다.
- 故 장영희 서강대 교수


“이미 행동한 것에 대한 후회는 시간이 가면서 조금씩 줄어든다.
그러나 행동하지 못한 것에 대한 후회는 시간이 갈수록 커질 뿐이다.”
시드니 해리스 글 함께 보내드립니다.

Posted by 홍반장水 홍반장水

댓글을 달아 주세요

Word Tokenization 단어 토큰화

 

자연어 처리에서 크롤링 등으로 얻어낸 코퍼스 데이터가 필요에 맞게 전처리되지 않은 상태라면, 해당 데이터를 사용하고자하는 용도에 맞게 토큰화(tokenization) & 정제(cleaning) & 정규화(normalization)하는 일을 하게 됩니다. 이번 챕터에서는 그 중에서도 토큰화에 대해서 배우도록 합니다.

주어진 코퍼스(corpus)에서 토큰(token)이라 불리는 단위로 나누는 작업을 토큰화(tokenization)라고 부릅니다. 토큰의 단위가 상황에 따라 다르지만, 보통 의미있는 단위로 토큰을 정의합니다.

이 챕터에서는 토큰화에 대한 발생할 수 있는 여러가지 상황에 대해서 언급하여 토큰화에 대한 개념을 이해합니다. 뒤에서 파이썬과 NLTK 패키지, KoNLPY를 통해 실습을 진행하며 직접 토큰화를 수행해보겠습니다.

 

 


## word_tokenize는 Don't를 Do와 n't로 분리하였으며, 
## 반면 Jone's는 Jone과 's로 분리한 것을 확인할 수 있습니다.
>from nltk.tokenize import word_tokenize  
>print(word_tokenize("Don't be fooled by the dark sounding name, Mr. Jone's Orphanage is as cheery as cheery goes for a pastry shop."))  
['Do', "n't", 'be', 'fooled', 'by', 'the', 'dark', 'sounding', 'name', ',', 'Mr.', 'Jone', "'s", 'Orphanage', 'is', 'as', 'cheery', 'as', 'cheery', 'goes', 'for', 'a', 'pastry', 'shop', '.']  


## WordPunctTokenizer는 구두점을 별도로 분류하는 특징을 갖고 있기때문에, 앞서 확인했던
## word_tokenize와는 달리 Don't를 Don과 '와 t로 분리하였으며, 
## 이와 마찬가지로 Jone's를 Jone과 '와 s로 분리한 것을 확인할 수 있습니다.
>from nltk.tokenize import WordPunctTokenizer  
>print(WordPunctTokenizer().tokenize("Don't be fooled by the dark sounding name, Mr. Jone's Orphanage is as cheery as cheery goes for a pastry shop."))
['Don', "'", 't', 'be', 'fooled', 'by', 'the', 'dark', 'sounding', 'name', ',', 'Mr', '.', 'Jone', "'", 's', 'Orphanage', 'is', 'as', 'cheery', 'as', 'cheery', 'goes', 'for', 'a', 'pastry', 'shop', '.']  


## 케라스 또한 토큰화 도구로서 text_to_word_sequence를 지원합니다. 이번에는 케라스로 토큰화를 수행해봅시다.
## 케라스의 text_to_word_sequence는 기본적으로 모든 알파벳을 소문자로 바꾸면서 온점이나 
## 컴마, 느낌표 등의 구두점을 제거합니다. 하지만 don't나 jone's와 같은 경우 아포스트로피는 보존하는 것을 볼 수 있습니다.
>from tensorflow.keras.preprocessing.text import text_to_word_sequence
>print(text_to_word_sequence("Don't be fooled by the dark sounding name, Mr. Jone's Orphanage is as cheery as cheery goes for a pastry shop."))
["don't", 'be', 'fooled', 'by', 'the', 'dark', 'sounding', 'name', 'mr', "jone's", 'orphanage', 'is', 'as', 'cheery', 'as', 'cheery', 'goes', 'for', 'a', 'pastry', 'shop']


## 표준으로 쓰이고 있는 토큰화 방법 중 하나인 Penn Treebank Tokenization의 규칙에 대해서 소개하고, 토큰화의 결과를 보도록 하겠습니다.
## 규칙 1. 하이푼으로 구성된 단어는 하나로 유지한다.
## 규칙 2. doesn't와 같이 아포스트로피로 '접어'가 함께하는 단어는 분리해준다. 
>from nltk.tokenize import TreebankWordTokenizer
>tokenizer=TreebankWordTokenizer()
>text="Starting a home-based restaurant may be an ideal. it doesn't have a food chain or restaurant of their own."
>print(tokenizer.tokenize(text))
['Starting', 'a', 'home-based', 'restaurant', 'may', 'be', 'an', 'ideal.', 'it', 'does', "n't", 'have', 'a', 'food', 'chain', 'or', 'restaurant', 'of', 'their', 'own', '.']
Posted by 홍반장水 홍반장水

댓글을 달아 주세요

맷플롯립(Matplotlib)은 데이터를 차트(chart)나 플롯(plot)으로 시각화(visulaization)하는 패키지입니다. 데이터 분석에서 Matplotlib은 데이터 분석 이전에 데이터 이해를 위한 시각화나, 데이터 분석 후에 결과를 시각화하기 위해서 사용됩니다.

아나콘다를 설치하지 않았다면 아래의 커맨드로 Matplotlib를 별도 설치할 수 있습니다.

pip install matplotlib
> ipython
...
In [1]: import matplotlib as mpl
In [2]: mpl.__version__
Out[2]: '2.2.3'

Matplotlib을 다 설치하였다면 Matplotlib의 주요 모듈인 pyplot을 임포트할 수 있습니다. 해당 모듈을 임포트할 때는 주로 plt라는 이름으로 사용합니다. 또한 주피터 노트북으로 matplotlib을 실습하기 위해서는 주피터 노트북에 그림을 표시하도록 지정하는 %matplotlib inline 또한 우선 수행해야 합니다. 아래의 모든 실습들은 아래 내용을 임포트하였다고 가정합니다.

pyplot의 경우, 주로 plt라는 명칭으로 임포트하는 것이 관례입니다.

%matplotlib inline
import matplotlib.pyplot as plt

라인 플롯 그리기

plot()은 라인 플롯을 그리는 기능을 수행합니다. plot() X축과 Y축의 값을 기재하고 그림을 표시하는 show()를 통해서 시각화해봅시다. 그래프에는 제목을 지정해줄 수 있는데 이 경우에는 title('원하는 제목')을 사용합니다. 여기서는 그래프에 'test'라는 제목을 넣어봅시다.

사실 주피터 노트북에서는 show()를 사용하지 않더라도 그래프가 자동으로 렌더링 되므로 그래프가 시각화가 되는 것을 확인할 수 있지만, 여기서는 다른 개발 환경에서 사용할 때 또한 가정하여 show()를 실습 코드에 삽입하였습니다.

plt.title('students')
plt.plot([1,2,3,4],[2,4,8,6])
plt.plot([1.5,2.5,3.5,4.5],[3,5,8,10]) #라인 새로 추가
plt.xlabel('hours')
plt.ylabel('score')
plt.legend(['A student', 'B student']) #범례 삽입
plt.show()

 

 

Posted by 홍반장水 홍반장水

댓글을 달아 주세요

 

 외부 데이터 읽기

Pandas는 CSV, 텍스트, Excel, SQL, HTML, JSON 등 다양한 데이터 파일을 읽고 데이터 프레임을 생성할 수 있습니다.

예를 들어 csv 파일을 읽을 때는 pandas.read_csv()를 통해 읽을 수 있습니다.
다음과 같은 example.csv 파일이 있다고 합시다.

 

df=pd.read_csv('example.csv 파일의 경로') # example.csv 파일 읽기
# 예를 들어 윈도우 바탕화면에서 작업한 저자의 경우
# df=pd.read_csv(r'C:\Users\USER\Desktop\example.csv')였습니다.
print(df)

이 경우 인덱스가 자동으로 부여된 것을 볼 수 있습니다. 인덱스를 출력해보도록 하겠습니다.

> print(df.index)
RangeIndex(start=0, stop=6, step=1)
Posted by 홍반장水 홍반장水

댓글을 달아 주세요

"나중에"
"나중에 한번 보자"라고 말하며 전화를 끊었다.
그래서 한번 볼 날을 기대했다.
그러나 한번 볼 날이 없었다.

그렇게 "나중에"는 없었다.
오로지 "지금"만 있을 뿐


- 박영신의《옹달샘에 던져보는 작은 질문들》중에서 -


* 너무 쉽게
흔히 하는 말이 있습니다.
"나중에 보자", "나중에 하자"
그러고는 끝입니다.
'나중에'는 없습니다.

'생활의 발견 > 아침편지' 카테고리의 다른 글

황제펭귄  (0) 2020.12.03
누가 더 행복할까?  (0) 2020.12.02
'나중에'는 없다  (0) 2020.12.01
아이들이 번쩍 깨달은 것  (0) 2020.11.30
길을 잃으면 길이 찾아온다  (0) 2020.11.30
절대 잊을 수 없는 날  (0) 2020.11.27
Posted by 홍반장水 홍반장水

댓글을 달아 주세요