반응형
반응형

팬데믹으로 인해 긴급하게 도입한 솔루션을 3가지 항목으로 구분하는 것부터 시작하라고 권고했다.

1) 유지해도 괜찮은 솔루션

2) 수정해야 하는 솔루션

3) 없애거나 교체해야 하는 솔루션

 

 

www.ciokorea.com/news/181794

 

IT에 드리우는 그림자··· 코로나발(發) ‘기술 부채’

코로나19 사태 동안 누적된 ‘기술 부채(Technical Debt)’가 향후 몇 년간 CIO들을 그림자처럼 따라다닐 전망이다.  ⓒGetty Images가트너 애널리스트에 따르면 가장 적합한 기술 솔루션 구축보다 딜리

www.ciokorea.com

 

반응형
반응형

딥러닝 자연어처리 - RNN에서 BERT까지

 

< 딥러닝 자연어처리 - RNN에서 BERT까지 >
- RNN/LSTM
- Seq2Seq
- 어텐션
- 트랜스포머
- BERT

< 챗봇 개발자 모임 >
- https://www.facebook.com/groups/ChatbotDevKR/

.

반응형
반응형

인공지능(AI) 언어모델 ‘BERT(버트)'는 무엇인가

github.com/google-research/bert

 

google-research/bert

TensorFlow code and pre-trained models for BERT. Contribute to google-research/bert development by creating an account on GitHub.

github.com

지난해 11월, 구글이 공개한 인공지능(AI) 언어모델 ‘BERT(이하 버트, Bidirectional Encoder Representations from Transformers)’는 일부 성능 평가에서 인간보다 더 높은 정확도를 보이며 2018년 말 현재, 자연 언어 처리(NLP) AI의 최첨단 딥러닝 모델이다. 

또한 BERT는 언어표현 사전학습의 새로운 방법으로 그 의미는 '큰 텍스트 코퍼스(Wikipedia와 같은)'를 이용하여 범용목적의 '언어 이해'(language understanding)' 모델을 훈련시키는 것과 그 모델에 관심 있는 실제의 자연 언어 처리 태스크(질문·응답 등)에 적용하는 것이다.

특히 BERT는 종래보다 우수한 성능을 발휘한다. BERT는 자연언어 처리 태스크를 교육 없이 양방향으로 사전학습하는 첫 시스템이기 때문이다. 교육 없음이란 BERT가 보통의 텍스트 코퍼스만을 이용해 훈련되고 있다는 것을 의미한다. 이것은 웹(Web) 상에서 막대한 양의 보통 텍스트 데이터가 여러 언어로 이용 가능하기 때문에 중요한 특징으로 꼽는다.

사전학습을 마친 특징 표현은 문맥에 '의존하는 방법'와 '의존하지 않는 방법'의 어느 방법도 있을 수 있다. 또 문맥에 의존하는 특징적인 표현은 단방향인 경우와 혹은 양방향일 경우가 있다. word2vec나 GloVe와 같이 문맥에 의존하지 않는 모델에서는, 어휘에 포함되는 각 단어마다 '단어 삽입(word embedding)'이라는 특징 표현을 생성한다. 따라서, 'bank'라는 단어는 'bank deposit' 또는 'river bank'과 같은 특징으로 표현되며, 문맥에 의존하는 모델에서는 문장에 포함되는 다른 단어를 바탕으로 각 단어의 특징을 표현 생성한다.

 

 

 

BERT는 문맥에 의존하는 특징적인 표현의 전학습을 실시하는 대응을 바탕으로 구축되었다. 그러한 대응은 Semi-supervised Sequence Learning, Generative Pre-Training, ELMo, 및 ULMFit를 포함하며, 대응에 의한 모델은 모두 단방향 혹은 얕은 양방향이다. 각 단어는 단지 그 왼쪽(혹은 오른쪽)에 존재하는 단어에 의해서만 문맥의 고려가 되는 것을 의미한다.

예를 들어, I made a bank deposit라는 문장은 bank의 단방향 특징표현은 단지 I made a만에 의해 결정되며, deposit은 고려되지 않는다. 몇개의 이전의 대응에서는 분리한 좌문맥모델과 우문맥모델에 의한 특징표현을 조합하고 있었지만, 이것은 얕은 양방향 방법이다. BERT는 bank를 왼쪽과 오른쪽 양쪽의 문맥 I made a ... deposit을 딥 뉴럴 네트워크(Deposit)의 최하층에서 이용해 특징을 표현하기 때문에 BERT는 '딥 양방향(deeply bidirectional)'이다.

BERT는 간단한 접근법을 사용한다. 입력에서 단어의 15%를 숨기고 딥 양방향 Transformer encoder(관련 논문다운)를 통해 전체 시퀀스를 실행한 다음 마스크 된 단어만 예측한다. 예를 들어, 아래와 같이 문간의 관계를 학습하기 위해서는 임의의 단언어 코퍼스에서 생성 가능한 심플한 작업을 이용하여 학습한다. A와 B의 두 개의 글을 받았을 때 B가 A의 뒤에 오는 실제 문장인지, 코퍼스 안의 랜덤한 글인지를 판정하는 태스크이다.
 

또한 큰 모델(12층에서 24층의 Transformer)을 큰 코퍼스(Wikipedia + BookCorpus)로 긴 시간을 들여(100만 갱신 스텝) 훈련했다. 그것이 BERT이며, 이용은 '사전학습'과 '전이학습'의 2단계로 구분된다.

사전학습(pre-training)은 상당히 고가로 4에서 16개의 Cloud TPU로 4일(12 층의 Transformer 모델의 경우 4개의 TPU를 사용하여 4일, 24층 Transformer 모델의 경우 16개의 TPU를 사용하여 4일이라는 의미) 각 언어마다 1회만의 순서이다. 자연 언어 처리 개발자는 처음부터 자신의 모델을 사전 학습할 필요가 없다.

전이학습(Fine-tuning)은 저렴하며, 논문(아래 참조)과 똑같은 사전학습이 끝난 모델을 사용하여 하나의 Cloud TPU를 이용, 1시간 GPU를 사용하면 2, 3시간만에 재현할 수 있다. 예를 들면 SQuAD는 하나의 Cloud TPU를 이용 30분으로 하나의 시스템으로서는 최첨단(state-of-the-art)인 91.0%의 Dev F1을 달성할 수 있다.

이밖에 BERT의 또 다른 중요한 측면은 많은 종류의 자연 언어 처치 태스크로 인해 매우 쉽게 채택될 수 있다. 논문 중에서 문장 수준 (SST-2 등), 문장 쌍 수준(MultiNLI 등), 단어 수준(NER 등) 스팬 레벨 2 (SQuAD 등)의 태스크에 대해서 거의 태스크 특유의 변경을 실시하는 일 없이, 최첨단 결과를 얻을 수 있는 것을 나타내고 있다.

참고) 'BERT: 언어 이해를 위한 양방향 트랜스포머 사전 학습(BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding)' 논문(다운받기), BERT Google-research의 깃허브(GitHub) (바로가기) 
 

www.aitimes.kr/news/articleView.html?idxno=13117

 

인공지능(AI) 언어모델 ‘BERT(버트)'는 무엇인가 - 인공지능신문

지난해 11월, 구글이 공개한 인공지능(AI) 언어모델 ‘BERT(이하 버트, Bidirectional Encoder Representations from Transformers)’는 일부 성능 평가에서 인간보다 더 높은 정확도를 보이며 2018년 말 현재, ...

www.aitimes.kr

ebbnflow.tistory.com/151

 

[BERT] BERT에 대해 쉽게 알아보기1 - BERT는 무엇인가, 동작 구조

● 언어모델 BERT BERT : Pre-training of Deep Bidirectional Trnasformers for Language Understanding 구글에서 개발한 NLP(자연어처리) 사전 훈련 기술이며, 특정 분야에 국한된 기술이 아니라 모든 자연어..

ebbnflow.tistory.com

vhrehfdl.tistory.com/15

 

슬기로운 NLP 생활 [13] BERT

이전 글 [1] 자연어처리란? [2] Classification Task [3] POS Tagging [4] Stemming, Lemmatizing [5] 형태소 분석기 [6] One-Hot Encoding, Bag Of Word [7] TF-IDF [8] Word2vec [9] Fasttext [10] Glove [11] E..

vhrehfdl.tistory.com

 

반응형
반응형

도토리·일촌의 추억, 싸이월드 부활한다

경영난으로 폐업 위기에 몰렸던 국내 1세대 소셜미디어 싸이월드가 다음 달 서비스를 재개한다. 2일 IT 업계에 따르면 신설 법인 싸이월드Z는 지난달 말 전제완 싸이월드 대표로부터 싸이월드 서비스 운영권을 인수하는 계약을 체결했다. 싸이월드Z는 엔터테인먼트 회사 스카이이엔엠 등 5개 기업이 컨소시엄을 구성해 설립한 법인이다.

 

싸이월드Z는 이르면 3월 중 기존 싸이월드 PC 서비스를 정상화할 계획이다. 회사 관계자는 “많은 사용자가 접속할 가능성이 높아 내부 베타 서비스를 거쳐 정식 오픈할 예정”이라고 설명했다. 상반기 중에는 모바일 앱도 출시할 예정이다.

전제완 대표는 기존 직원들에게 체불한 임금 10억원을 컨소시엄이 해결하는 조건으로 싸이월드를 넘긴 것으로 알려졌다. 전 대표는 직원 27명의 임금·퇴직금 4억7000만원 상당을 체불한 혐의로 기소돼 지난해 11월 1심에서 징역 1년 6개월을 선고받았다. 싸이월드는 지난해 5월 매출과 영업 활동이 장기간 포착되지 않아 관할 세무서에 의해 폐업 처리됐다.

반응형
반응형

암호화 파일을 dll로 만들어서 등록 후 사용하기. 

소스는 찾아보면 많이 있고. 

 

dll을 IIS에 등록해야 하는데. 찾아보니 coolsharp.blogspot.com/2012/10/asp-c-dll.html 여기가 내가 원하는게 있군. 

위 링크에서 보고 만들어서 해보면 된다. 

그런데, DLL을 다른 PC에서 만들고 내 PC에 DLL을 등록하려면 오류 발생. 

 

이런 에러가 나서 뭔가 했더니 DLL만든 PC와 다른 곳에서 셋팅을 하면 발생. 

(예외가 발생한 HRESULT: 0x80131515)

"이 파일은 다른 컴퓨터로부터 왔으며 사용자의 컴퓨터를 보호하기 위해 차단 되었을 수도 있습니다."

에서 "차단해제"를 하면 된다. 

반응형
반응형

[웨비나] S/W 기업이 SaaS 비즈니스 모델을 고민해야 하는 이유

 

내용

> 웨비나 사전 신청하기 (링크)

> 네이버 클라우드 플랫폼 교육 및 행사 일정 더보기 (링크)

> 네이버 클라우드 플랫폼 바로가기 (링크)

 

 

※ 본문 링크가 클릭되지 않는 분들은 하단 링크를 사용해주세요.

 

> 웨비나 사전 신청하기 (링크)
> 네이버 클라우드 플랫폼 교육 및 행사 일정 더보기 (링크)
> 네이버 클라우드 플랫폼 바로가기 (링크)

 

감사합니다.

 

유의 사항

[웨비나] S/W 기업이 SaaS 비즈니스 모델을 고민해야 하는 이유

 

소프트웨어 기업과 고객은 왜 SaaS(Software as a Service)를 선택하는 것일까요?

이번 웨비나에서는 SaaS 시장 동향과 SaaS 비즈니스 모델의 장점부터

SaaS 필수 기능, 가격 모델, 성장 전략 등을 알아보겠습니다.

그리고 SaaS 구축에 효과적으로 사용할 수 있는 네이버 클라우드 플랫폼 상품도 함께 소개해드립니다.

 

■ 일시 : 

2020년 1월 21일 (목) 11:00 - 12:00 

 

■ 내용 :

- SaaS 시장 동향 및 Overview

- How to Build a SaaS Product?

- SaaS on NAVER Cloud Platform

 

■ 참여 방법 : 

본 세미나는 온라인으로 진행되므로 사전 등록 후, 

당일 웨비나 시작 시간에 맞춰 해당 웹사이트로 접속하시면 됩니다.

www.ncloud.com/support/edu/296

 

NAVER CLOUD PLATFORM

cloud computing services for corporations, IaaS, PaaS, SaaS, with Global region and Security Technology Certification

www.ncloud.com

 

반응형

+ Recent posts