Update the model’s neural weights from a sequence of sentences (can be a once-only generator stream). For Word2Vec, each sentence must be a list of unicode strings. (Subclasses may accept other examples.)
문장의 시퀀스에서 모델의 신경 가중치를 업데이트하십시오 (한 번만 생성기 스트림 일 수 있음). Word2Vec의 경우 각 문장은 유니 코드 문자열 목록이어야합니다. 서브 클래스는 다른 예를 받아들이는 일이 있습니다.
To support linear learning-rate decay from (initial) alpha to min_alpha, either total_examples (count of sentences) or total_words (count of raw words in sentences) should be provided, unless the sentences are the same as those that were used to initially build the vocabulary.
(초기) alpha에서 min_alpha까지의 선형 학습 률 감소를 지원하려면, 문장이 처음 빌드에 사용 된 것과 같지 않으면 total_examples (문장의 수) 또는 total_words (문장의 원시 단어의 수)가 제공되어야합니다 어휘.
>>> model.save(fname)>>> model=Word2Vec.load(fname)# you can continue training with the loaded model!
The word vectors are stored in a KeyedVectors instance in model.wv. This separates the read-only word vector lookup operations in KeyedVectors from the training code in Word2Vec.
>>> model.wv['computer']# numpy vector of a wordarray([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32)
model 이 잘 불러와졌는지 확인하려면 model의 내용을 보자.
model.vocab 하며 내용을 볼 수 있다.
most_similar 에서 vocaburary에 단어가 없다고 에러나오면 내용을 확인 후 다시 검색해보면 된다.
플라스크는 작고 강력한 파이썬의 웹 프레임워크 입니다. 플라스크는 배우기 쉽고, 짧은 시간에 웹앱을 만들수 있습니다.
Flask의 세계에 오신것을 환영합니다.
Flask 문서에 오신것을 환영합니다. 이 문서는 다양한 파트로 나누어져 있습니다. 저자는 설치하기 와 빠르게 시작하기 를 먼저 보실것을 추천합니다. 빠르게 시작하기 뿐만아니라, 어떻게 Flask 어플리케이션을 만들 수 있는지 좀 더 상세하게 다루는 튜토리얼 또한 볼 수 있습니다.
이 페이지는 Python 프로그래밍 언어의 공식 CPython 배포판을위한 많은 과학적 오픈 소스 확장 패키지의 32 비트 및 64 비트 Windows 바이너리를 제공합니다.
파일은 비공식적 인 형식 (비공식, 비 인식, 개인, 지원되지 않음, 무보증, 책임 없음, "있는 그대로"제공됨)이며 테스트 및 평가 목적으로 제공됩니다.
다운로드가 실패하면이 페이지를 새로 고침하고, JavaScript를 활성화하고, 다운로드 관리자를 비활성화하고, 프록시를 비활성화하고, 캐시를 지우고 Firefox를 사용하십시오. 필요에 따라 수동으로 파일을 다운로드하십시오.
대부분의 바이너리는 PyPI 또는 프로젝트 공개 개정 관리 시스템에서 찾을 수있는 소스 코드로 작성됩니다. 소스 코드 변경 사항은 프로젝트 관리자에게 제출되었거나 패키지에 포함되어 있습니다.
라이센스 제한 및 종속성에 대해서는 개별 패키지의 문서를 참조하십시오.
pip 버전 8 이상을 사용하여 다운로드 한 .whl 파일을 설치하십시오. 이 페이지는 pip 패키지 색인이 아닙니다.
많은 바이너리는 numpy-1.11 + mkl과 Microsoft Visual C ++ 2008 (CPython 2.7 용 x64, x86 및 SP1), Visual C ++ 2010 (x64, CPython 3.4 용 x86) 또는 Visual C ++ 2015 (x64 및 x86 용 CPython 3.5 및 3.6) 재배포 가능 패키지
numpy + mkl을 의존하는 다른 패키지보다 먼저 설치하십시오.
바이너리는 Windows> = 6.0에서 가장 최근의 공식 CPython 배포판과 호환됩니다. Blender, Maya, ArcGIS, OSGeo4W, ABAQUS, Cygwin, Pythonxy, Canopy, EPD, Anaconda, WinPython 등에 포함 된 Python 배포판에서는 작동하지 않을 가능성이 많습니다. 많은 바이너리는 Windows XP 또는 Wine과 호환되지 않습니다.
패키지는 ZIP 또는 7z 파일로, 수동 또는 스크립팅 설치 또는 재 패키징이 가능합니다.
이 파일은 어떠한 종류의 보증이나 지원없이 "있는 그대로"제공됩니다. 품질 및 성능에 대한 모든 위험은 귀하와 함께 있습니다.
이 페이지에 표명 된 의견이나 진술은 형광 역학 연구소 또는 캘리포니아 주립 대학의 지위 또는 승인으로 간주되어서는 안됩니다.